В единичном и серийном производствах при отсутствии зуборезных станков конические зубчатые колеса с прямым и косым зубом можно нарезать на универсально-фрезерном станке с использованием делительной головки дисковыми модульными фрезами (9-10-я степени точности, Rz=20—50 мкм). Для нарезания зубчатых колес 7—8-й (Rz = 10—20 мкм) степеней точности требуются специальные зуборезные станки.
В серийном и массовом производстве прямые зубья конических колес нарезают методом обкатки — зубостроганием (рис. 1). Время нарезания зуба 3,5—30 с.
При этом зубья с m > 2,5 предварительно прорезают профильными дисковыми фрезами методом деления на специальных или специализированных станках. Эти станки снабжаются специальным устройстом для установки нескольких заготовок и их автоматического поворота.
В крупносерийном и массовом производстве ля предварительного нарезания зубьев конических зубчатых колес применяют зуборезные станки для одновременного фрезерования трех заготовок с автоматическим делением, остановом, подводом и отводом стола.
В массовом производстве для обработки прямых зубьев небольших конических колес применяют производительный метод — круговое протягивание зубьев на специальных зубопротяжных станках (рис. 2).
Режущим инструментом служит круговая протяжка 2, состоящая из нескольких секций, черновых 3 и чистовых 4 резцов.
При черновом и получистовом нарезании протяжка имеет поступательное движение от вершины начального конуса к его основанию, а при чистовом — в обратном направлении. За один оборот она полностью обрабатывает одну впадину.
Нарезание конических зубчатых колес с криволинейными зубьями: производится на специальных станках, работающих методом копирования и обкатки (рис. 3).
Режущим инструментом служат режущие головки.Черновое нарезание производится методом копирования. Чистоное — методом обкатки.
В настоящее время зубья конических колес с успехом накатываются и шлифуются.
Обработку зубьев можно производить методом копирования: протягиванием, накатыванием, шлифованием, фрезерованием дисковыми и пальцевыми фрезами или методом обкатки: червячными фрезами строганием, и долбяками, накатыванием, шлифованием, шевингованием, притиркой.
Нарезание зубьев модульными дисковыми и пальцевыми фрезами заключается в последовательном фрезеровании впадин между зубьями фасонной дисковой или пальцевой модульными фрезами. Такие фрезы изготавливают набором из 8 или 15 шт. для каждого модуля. Обычно применяют набор фрез из 8 шт., обработка которыми позволяет получить зубчатые колеса 9-й степени точности. Такое количество фрез в каждом наборе необходимо потому, что каждая фреза набора предназначена для определенного интервала числа зубьев.
Дисковыми модульными фрезами можно нарезать как прямые, так и косые зубья с малым и большим модулем. Пальцевыми модульными: фрезами нарезают зубья средних и крупномодульных цилиндрических шевронных колес, реек и др. Обработка зубьев цилиндрических 3убчатых колес дисковыми и пальцевыми модульными фрезами производится на горизонтально- и вертикально-фрезерных станках в единичном и мелкосерийном производстве при отсутствии специальных зуборезных станков. Метод малопроизводительный, дает 9—11 квалитет, Rz = 60—80 мкм.
Нарезка зубьев червячными фрезами имеет более высокую производительность и наибольшее распространение, получаемая точность 8—9-й степеней и А = 20—40 мкм. Процесс производится на зубофрезерных станках червячными фрезами и может применяться как для прямых, так и косых зубьев.
Зубчатые колеса с модулем < 2,5 мм нарезают за один ход начисто, с модулем > 2,5 мм нарезают начерно и начисто в два и даже в три хода.
Для черновых ходов применяются двух- и трехзаходные червячные фрезы для повышения производительности.
Зубодолбление долбяками применяют для черновой и чистовой обработки зубчатых колес с внутренним зацеплением и закрытых зубчатых венцов с внешним зацеплением.
Обычные зубчатые колеса средних модулей (2,5—5 мм) пелесообразно предварительно обрабатывать на зубофрезерных станках, а чистовую обработку на зубодолбежных станках с m > 5 мм экономичнее обрабатывать на зубофрезерных станках, с m < 2,5 мм на зубодолбежных станках. Зубодолбление позволяет получить 7—8 степени точности и Rz = 10—20 мкм.
В индивидуальном производстве для неточных зубчатых колес и в условиях ремонта при отсутствии зуборезных станков зубья можно обработать на долбежном или строгальном станках фасонными резцами.
Протягивание зубьев может быть использовано в крупносерийном и массовом производстве для протягивания зубьев зубчатых секторов.
Накатывание зубьев в 15—20 раз производительнее зубонарезания. Зубья модулем до 1 мм накатываются в холодном состоянии, > 1 мм — в горячем состоянии.
В холодном состоянии мелкомодульные зубчатые колеса в условиях единичного, мелкосерийного и серийного производств могут накатываться на токарных станках с продольной подачей (рис. 1).
В крупносерийном и массовом производстве накатывание производится на специальных станках плоскими рейками.
Достигаемая степень точности — 8, шероховатость Ra = 1,2— 2,0 мкм.
Горячее накатывание может производиться как с радиальной, так и продольной подачей. Применяется в крупносерийном и массовом производстве и осуществляется на специальных модульных станках. Нагрев заготовки осуществляется ТВЧ до 1000—1200 °С за 20—30 с до накатывания.
Шевингование — это метод чистовой отделки зубьев зубчатых колес, заключающийся в процессе обкатывания зубчатого колеса с шевером при наличии продольной подачи. Режимы: припуск 0,04— 0,03 мм; скорость вращения шевера v = 100 м/мин; продольная подача Sпр = 0,15—0,3 мм, поперечная подача S = 0,02—0,04 мм на 1 ход стола. Шевингование повышает точность предварительной обработки на 1—2 степени и позволяет получить шероховатость Ra = 0,6—1,0 мкм.
Шевингование применяется в серийном, крупносерийном и массовом производствах в основном для отделки зубьев до термообработки.
Шлифование зубьев применяется для отделки зубьев после термообработки
Шлифование зубьев с эвольвентным профилем производится методом копирования и методом обкатки.
Метод копирования, осуществляемый фасонными кругами, более производительный, но менее точный. Он применяется в крупносерийном и массовом производствах.
Шлифование зубьев методом обкатки производится одним или двумя тарельчатыми кругами на зубошлифовальных станках (рис. 2).
Зубохонингование применяется для чистовой обработки зубьев за каленных цилиндрических колес внешнего и внутреннего зацепления (рис. 3).
Зубчатое колесо осуществляет вращательное и возвратно поступательное движение. Обработка производится на специальных зубохонинговальных станках с режимами: частота вращения хона 180—200 мин-1; подача стола 180—210 мм/мин, число ходов стола 4—6. Время хонингования обычного зубчатого колеса составляет 30—60 с.
Хонингование зубьев позволяет уменьшить шероховатость их поверхности до Ra = 0,32 мкм.
Притирка зубьев (ляппинг-процесс) широко применяется для чистовой окончательной отделки зубьев после термообработки вместо шлифования. Процесс притирки заключается в том, что обрабатываемое зубчатое колесо вращается в зацеплении с чугунными шестернями притирами, приводимыми во вращение и смазываемыми пастой, состоящей из смеси мелкого абразивного порошка с маслом. Кроме того, обычно колесо имеет осевое возвратно-поступательное перемещение.
Притирка позволяет получить Ra = 0,1 мкм и исправить небольшую погрешность. При наличии значительных погрешностей зубчатые колеса необходимо сначала шлифовать, а затем притирать.
Закругление зубьев необходимо производить у зубчатых колес, переключающихся на ходу, для облегчения их включения. Процесс закругления производится специальными пальцевыми фрезами на зубозикругляющих станках.
Пальцевая фреза вращается и одновременно имеет возвратно-поступательное движение, зубчатое колесо имеет вращательное движение (рис. 4).
Рабочее место — часть производственной площади, которая закрепляется за работником для выполнения определенного вида работ и должна быть оснащена оборудованием, приспособлениями, инструментами и материалами, необходимыми для их проведения.
Техническое оснащение рабочего места слесаря.
Основным оборудованием рабочего места слесаря является верстак с установленными на нем тисками (рис. 1, а).
Верстак состоит из стального каркаса, выполненного из труб или профильного проката, на котором установлена столешница, изготовленная из дерева твердых пород и покрытая листовой сталью. По периметру столешница окантована буртиком 7 из стального уголка. Под столешницей располагаются выдвижные ящики 2 для хранения инструментов, деталей и технической документации. Для обеспечения удобства работы на верстаке размещают планшет 6 для режущих инструментов и инструментальную полку 4 для контрольно-измерительных инструментов.
На верстаке устанавливают тиски 3, высота которых может регулироваться в соответствии с ростом работающего винтом 1 за счет вращения рукоятки 8. На полу, возле верстака, устанавливают решетку, которая должна плотно прилегать к полу и не скользить.
Для защиты работника от возможного травматизма на верстаке устанавливают защитный экран 5 из металлической сетки или ортанического стекла.
При размещении инструментов на верстаке необходимо учитывать частоту их использования, располагая таким образом, чтобы обеспечить удобный доступ к ним (рис. 1, б).
Наибольшее распространение при выполнении слесарных работ получили стуловые, параллельные (поворотные и неповоротные) тиски.
Стуловые тиски (рис. 2) предназначены для выполнения тяжелых работ, связанных с большими ударными нагрузками, например рубка, клепка, гибка, и имеют весьма ограниченную область применения.
Стуловые тиски закрепляют на верстаке 1 при помощи планки 2, которая обеспечивает плотное прижатие к верстаку стержня 8, изготовленного как единое целое с неподвижной губкой 3 тисков. Закрепление заготовки осуществляется между неподвижной 3 и подвижной 4 губками. Подвижная губка 4 совершает колебательное движение относительно оси, установленной в крон штейне, закрепленном на стержне 8. Сведение губок осуществляется при помощи зажимного винта 5, приводимого в движение рукояткой 6. Раздвижение губок после окончания обработки и освобождение обработанной детали производится за счет пружины 7 при отпущенном зажимном винте 5.
Параллельные поворотные слесарные тиски (рис. 3) применяют наиболее часто. Параллельными их называют потому, что при перемещении подвижной губки 4 она во всех положениях остается параллельной неподвижной губке 3. Тиски состоят из плиты 1 основания и поворотной части 2. Передвижение подвижной губки 4 обеспечивается винтовой парой (ходовой винт 7 и гайка 5 ходового винта), а параллельность этого перемещения — направляющей призмой 6.
Для поворота верхней части тисков относительно плиты основания 1 необходимо ослабить при помощи рукоятки 11 болты 10. Тогда при повороте верхней части тисков относительно оси 9 гайка 12 с болтом 10 будут свободно перемещаться в круговом Т-образном пазу 8. Верхняя часть тисков после установки в нужное положение закрепляется рукояткой 11.
Организация рабочего места.
На рабочем месте должны находиться заготовки, материалы, рабочие и контрольно-измерительные инструменты, необходимые для выполнения заданной операции. К размещению заготовок, материалов и инструментов на рабочем месте предъявляют определенные требования: — на рабочем месте должны находиться только те материалы, заготовки и инструменты, которые необходимы для выполнения данной операции; — расположение инструментов и материалов должно соответствовать частоте их использования в процессе выполнения работы: то, что используется чаще, должно располагаться ближе (рис. 4, а и б), справа и слева от работающего (эти зоны обозначены дугой 1 в горизонтальной плоскости и дугой А — в вертикальной плоскости. Радиусы этих дуг приблизительно равны 350 мм); то, что используют реже, должно располагаться в зонах, обозначенных дугой 2 в горизонтальной плоскости и дугой Б — в вертикальной. Радиусы этих дуг приблизительно равны 500 мм; те инструменты и материалы, которые используются крайне редко, располагают в зонах, обозначенных дугой 3 в горизонтальной плоскости и дугой В — в вертикальной. Их досягаемость обеспечивается только при наклонах корпуса работающего; — для размещения инструментов и приспособлений на рабочем месте возможна установка стеллажей, удобные и неудобные зоны достижения которых показаны на рис. 4, в.
Правила содержания рабочего места.
В связи с тем, что рациональная организация рабочего места и правильное размещение инструментов, материалов и заготовок в процессе обработки играет существенную роль в обеспечении ее качества, следует соблюдать следующие правила.
До начала работы необходимо:
проверить исправность верстака, тисков, приспособлений, индивидуального освещения и механизмов, используемых в работе;
ознакомиться с инструкцией или технологической картой, чертежом и техническими требованиями к предстоящей работе;
отрегулировать высоту тисков по своему росту;
проверить наличие и состояние инструментов, материалов и заготовок, используемых в работе;
разместить на верстаке инструменты, заготовки, материалы и приспособления, необходимые для выполнения работы.
Во время работы необходимо:
иметь на верстаке только те инструменты и приспособления, которые необходимы для выполнения заданной операции (все остальное должно находиться в ящиках верстака);
возвращать использованный инструмент на исходное место;
постоянно поддерживать чистоту и порядок на рабочем месте.
По окончании работы необходимо:
очистить инструмент от стружки, протереть, уложить в футляры и убрать в ящик верстка;
очистить от стружки и грязи поверхность верстака и тиски;
убрать с верстака неиспользованные материалы и заготовки, атакже готовые детали;
Изделие – предмет производства, подлежащий изготовлению на предприятии. Изделия делятся на две группы: а) не специфицированные – не имеющие составных частей (детали). б) специфицированные – состоящие из двух и более составных частей (сборочные единицы, комплексы, комплекты).
Деталь – изделие, изготовленное из однородного материала без применения сборочных операций.
Сборочная единица – изделие, составные части которого подлежат соединению между собой (свинчивание, сварка, клёпка, пайка, склеивание и т.д.).
Комплекс – два или более специфицированных изделия, не соединённых на предприятии-изготовителе сборочными операциями, но предназначенных для выполнения взаимосвязанных эксплуатационных функций (бурильная установка, цех-автомат и т.д.).
Комплект – набор изделий, имеющих общее эксплуатационное назначение вспомогательного характера (комплект инструмента, комплекты запасных частей и т.д.).
Производственный процесс – совокупность взаимосвязанных действий, в результате которых исходные материалы и полуфабрикаты превращаются в готовые изделия, соответствующие своему служебному назначению. Он охватывает: подготовку средств производства; обслуживание рабочих мест, все стадии изготовления изделия; сборку; внутризаводскую транспортировку, технический контроль; складские операции; упаковку и др.
Технологический процесс – часть производственного процесса, непосредственно связанная с последовательным изменением состояния объекта. Различают технологические процессы выполнения заготовок, термической обработки, механической обработки, сборки. В технологических процессах заготовительного характера происходит превращение исходного материала в заготовки деталей машин заданных размеров и конфигурации путём литья, резки проката, обработки давлением. Могут быть и комбинированные методы. В процессе термообработки происходят структурные превращения, изменяющие свойства материала детали. Под технологическим процессам механической обработки понимают изменения заготовки до изделия. Технологический процесс сборки – последовательное соединение элементов изделия в узлы (узловая сборка) и последующая сборка узлов и деталей в изделие (общая сборка).
Технологический процесс выполняется на рабочем месте. Рабочее место – участок производственной площади, оборудованный в соответствии с выполняемой на нём работой. Технологический прогресс расчленяется на операции.
Операция – законченная часть технологического процесса, выполняемая на одном рабочем месте, одним или группой исполнителей непрерывно (до перехода к следующей заготовке). Пример: сверление плюс растачивание на одном токарно-винторезном станке разными инструментами – одна операция. Растачивание на токарно-винторезном, а сверление – на сверлильном – две операции.
Технологическая операция содержит нижеприведённые элементы. Установ – часть технологической операции, выполняемая при неизмененном закреплении обрабатываемых заготовок или собираемой сборочной единицы (рис. 1).
При обработке заготовка может изменять положение относительно узлов станка при помощи поворотных устройств (делительных головок и т.д.), т.е. занимать различные позиции.
Позиция – фиксированное положение, занимаемое закреплённой заготовкой или собираемым узлом относительно инструмента или неподвижной части оборудования при выполнении определённой части операции. Пример: При обработке на револьверном станке каждое новое положение револьверной головки с инструментом считается позицией.
Технологический переход – законченная часть технологической операции, характеризуемая постоянством применяемого инструмента и поверхностей, образуемых обработкой или соединяемых при сборке, и постоянством режима работы.
Пример: Последовательное точение резцом сначала одной ступени вала, а потом другой будет состоять из двух переходов, а если выполнять обточку этих ступеней одновременно двумя резцами, то это будет обтачивание за один переход (рис. 2). Черновая и чистовая обработка также производится в два перехода, так как меняются режимы резания (подачи, скорость шпинделя, глубина резания).
Вспомогательный переход – законченная часть технологической операции, состоящая из действий человека и оборудования, которые не сопровождаются изменением формы, размеров и шероховатости поверхностей. Пример: установка и снятие заготовки, замена инструмента, его установка, контрольный промер и т.д.
Переход состоит из рабочих и вспомогательных ходов. Рабочий ход – законченная часть технологического перехода, состоящая из однократного перемещения инструмента относительно заготовки и сопровождаемая изменением размеров, шероховатости или свойств заготовки. Вспомогательный ход – законченная часть перехода, состоящая из однократного перемещения инструмента относительно заготовки, не сопровождаемая изменением формы, размеров, шероховатости или свойств заготовки, но необходимая для выполнения рабочего хода, например: перемещение суппорта токарного станка в исходное положение после выполнения обточки (то же для строгального станка).
Для обеспечения требуемой точности механической обработки необходимо принять меры для уменьшения возникающих погрешностей. С этой целью применяют следующие принципы выбора баз: а) принцип постоянства баз заключается в том, что при возможно большем числе операций используется одна и та же база. При этом на последующих операциях исключается влияние погрешностей взаимного расположения технологических баз на точность изготовления детали. б) принцип совмещения баз заключается в том, что в качестве технологических баз используют конструкторские и измерительные базы.
Возможность совмещения технологической, измерительной и конструкторской баз при обработке детали должна учитываться конструктором в процессе проектирования и технологом при разработке те.
В технологии установочные (технологические) базы разделяются на: черновые, промежуточные и окончательные.
Черновые базы используются на первых операциях обработки, когда ещё нет обработанных поверхностей на заготовке. Они служат для создания промежуточных установочных баз, а часто сразу окончательных, которые служат для проведения отделочных (финишных) операций. При выборе базовых поверхностей по ходу проведения ТП следует придерживаться следующих рекомендаций:
Всемерно использовать принцип совмещения и постоянства баз.
Придерживаться правила шести точек, т.е. обеспечить устойчивость и жёсткость установки, необходимую ориентацию её в приспособлении.
Черновую базу используют, как правило, однократно – на первой установке (для заготовок полученных точными методами литья и штамповки это правило не обязательно). За черновые базы применяют поверхности с наименьшим припуском на обработку. При выборе черновой поверхности за базовую следует выбирать ту поверхность, которая остаётся необработанной в готовом изделии.
На первых операциях ТП обрабатывают основные базовые поверхности (чистовые базы) или искусственные базовые поверхности.
Чистовые установочные базы должны быть базами конструкторскими (это исключает погрешность базирования); должны иметь наибольшую точность формы и размеров, малую шероховатость.
В зависимости от сложности детали имеется несколько схем базирования: 1. Заготовку базируют на необработанные поверхности и за одну операцию проводят полную обработку (на автоматах, агрегатных станках и т.п.). 2. Заготовку базируют при большей части операции на обработанные, несменяемые поверхности, подготовленные на первых операциях с базированием на черновые базы. Эта схема используется на более сложных деталях, обрабатываемых в несколько установов. 3. То же, что и в пункте 2, но перед последней операцией базовые поверхности обрабатываются окончательно. Используется эта схема при сложных деталях высокой точности. 4. Заготовку базируют на различные обработанные поверхности. Схема нежелательная, используется на деталях с особыми требованиями. 5. Базирование заготовки с повторной (многократной) обработкой последовательно сменяемых баз. Пример: шлифование бруска (предварительное и окончательное) на магнитной плите с последовательным перевёртыванием заготовки.
При выборе технологических баз необходимо придерживаться основных принципов, а также: – при вынужденной смене баз следует переходить от менее точной и более точной базе (принцип последовательной смены баз). – следует использовать типовые схемы установки.