Как снизить затраты на обработку с ЧПУ?

Обработка с числовым программным управлением (ЧПУ) – это производственный процесс, в котором запрограммированное компьютерное программное обеспечение диктует движение инструмента и механизмов. Станки с ЧПУ бывают разных форм, наиболее распространенными являются 3-, 4- и 5-осевые станки с ЧПУ. С каждой дополнительной осью свободы увеличивается сложность деталей, которые могут быть изготовлены. Мы рассмотрим эти 3 типа станков с ЧПУ далее в этой статье.

Введение.

С начала 1900-х годов традиционные методы производства были заменены машинами. Работа, которая раньше требовала квалифицированного труда для управления отдельными станками для каждого процесса, такими как токарный станок, сверлильный станок, фрезерный станок и т.д., теперь может быть выполнена с помощью одного станка с ЧПУ, программируемого компьютером. В производстве с ЧПУ станки управляются с помощью числового программного управления (ЧПУ), при котором для управления объектом задается программа.

Сегодня обработка на станках с ЧПУ стремительно набирает популярность в промышленности, поскольку все больше предприятий переходят на автоматизированный рабочий процесс, заменяя ручной труд машинами и человекоподобными роботами. Это привело к росту спроса на детали, обработанные по индивидуальному заказу. Однако эти заказные работы несут с собой целый ряд проблем, которые многие компании не учитывают до тех пор, пока с ними не столкнутся машинисты. Мы собрали в этой статье некоторые из наиболее распространенных проблем, чтобы помочь вам подумать, прежде чем обращаться в машиностроительные предприятия со своими уникальными идеями.

Предполагается, что заказные детали – это детали, которые уникальны и, следовательно, их количество невелико. Они могут быть или не быть очень сложными.

Более высокие затраты на настройку.

Логично, что детали с меньшим количеством заказов (< 10 штук) будут стоить дороже в пересчете на штуку по сравнению с заказами большого объема. Основная причина этого – первоначальные затраты на настройку. Все механические цеха имеют фиксированную ставку не только на работу станков, но и на каждую переналадку, необходимую в процессе обработки. Давайте проиллюстрируем это на примере.

Например, одна деталь, требующая обработки двух отдельных граней, потребует двух отдельных переналадок на обычном 3-осевом станке с ЧПУ (наиболее распространенный вариант). Если предположить, что каждая переналадка стоит $40, а стоимость работы – $40, то для одной детали общая стоимость составит $120. Теперь рассмотрим, если эту же деталь необходимо изготовить в количестве 10 штук. Общая стоимость двух переналадок и работы остается на уровне $120, поскольку каждый из 10 блоков может быть загружен в то же приспособление, что и для первой детали. Даже если к каждой из 10 деталей будет применена плата за обработку в размере $10, общая стоимость подготовки к работе составит $220, то есть $22 за деталь.

Ни одна из цен в приведенном примере не является репрезентативной для рынка и приведена исключительно в целях пояснения. Хорошо видно, что если бы нужно было изготовить только одну деталь, то стоимость наладки была бы почти в 6 раз дороже за штуку по сравнению с большим заказом из 10 таких деталей.

Вывод: нестандартные детали по своей природе будут дорогими, и нередко цены на менее чем 10 деталей более чем в два раза превышают цены, которые вы ожидаете, основываясь на прошлом опыте оптовых заказов.

Рост цен на материалы

Covid-19 оказал значительное влияние на всю нашу жизнь и каждую отрасль промышленности в мире. Мир обработки также сильно пострадал: цены меняются иногда до двух раз в неделю и никогда не снижаются. Одним из, если не самым важным критерием при составлении предложения является цена на требуемое сырье. Поскольку цены резко растут каждую вторую неделю, это означает, что котировки действительны в течение гораздо более короткого периода времени. Кроме того, запасы материалов поступают гораздо быстрее, поскольку многие заказы еще не выполнены. Это означает, что базовая цена на одну и ту же деталь постоянно меняется.

Вывод: большинству компаний, а также правительственным организациям требуется несколько предложений для сравнения, однако решение должно быть принято быстро. Промедление может обойтись вам очень дорого.

Стандартные размеры сырья

В продолжение предыдущего пункта о росте цен на материалы, сырье также массово производится в определенных стандартных размерах. Нехватка сырья в цепочках поставок из-за пандемии, а также резкий рост цен означают, что у вашего надежного поставщика может больше не оказаться на складе стандартных металлических труб или металлических листов.

Кроме того, ваш поставщик, скорее всего, сохранит все имеющиеся у него материалы для выполнения крупных заказов. Это делается для того, чтобы минимизировать потери, а также предложить лучшие цены. Кроме того, поставщик может не захотеть приобретать складской материал по вашему запросу, если имеющийся у него материал не может удовлетворить ваши потребности.

Например, если оператору требуется купить стальную трубу, которой нет на складе, ваше требование о покупке одной детали, длина которой составляет менее четверти имеющейся длины трубы, не имеет экономического смысла для поставщика принимать заказ. Это также будет очень дорого для вас, так как вам придется нести расходы на всю имеющуюся трубу, поскольку нет никакой гарантии, что этот материал когда-либо будет использован другим клиентом или заказом.

Вывод: есть несколько способов обойти проблемы, связанные с материалом. Самый простой – предоставить материал со склада за свой счет. Это позволит поставщику сэкономить на стоимости материала и повысит ваши шансы на принятие заказа, так как неиспользованный материал больше не является обязательством для вашего поставщика. Другой вариант – сохранять гибкость в отношении конструкции детали. Будьте готовы к изменениям в определенных размерах и толщине материала, чтобы поставщик мог изготовить вашу деталь из материала, который уже имеется в наличии.

Заключение.

Нынешняя ситуация может быть исторической аномалией, но ее последствия не заставят себя ждать. Поскольку цепочки поставок адаптируются к рационализации процессов и адаптации к индивидуальному производству “точно в срок”, в обозримом будущем произошедшие изменения будут продолжать увеличивать производственные затраты в целом и требования к индивидуальному производству в частности. Однако, если вы примете к сведению упомянутые в этой статье моменты, вы точно убережете себя от шокирующих и неожиданных результатов.

Фрезерная обработка с ЧПУ: что это такое и как это может улучшить ваш бизнес.

Обрабатывающая промышленность является основой любой экономики. Хотя она всегда играла важную роль, производственные отрасли уже не работают так, как много лет назад. Такие изменения можно объяснить развитием технологий, таких как автоматизация и робототехника, которые полностью меняют способы выполнения операций.

Одной из таких технологических разработок, кардинально изменивших производственные процессы, является фрезерная обработка с ЧПУ (числовое программное управление). ЧПУ – это производственный процесс, в котором заранее запрограммированное компьютерное программное обеспечение управляет движением машин и инструментов. Ожидается, что до 2026 года темпы роста отрасли ЧПУ составят 5,9%, что свидетельствует о её популярности.

Фрезерная обработка с ЧПУ, в частности, использует эти средства управления и вращающиеся многолезвийные режущие инструменты (фрезы) для удаления материала с заготовки и изготовления деталей по индивидуальному заказу.

Как используется ЧПУ?

Фрезерование с ЧПУ – это всего лишь один из аспектов обработки с ЧПУ, и, на самом деле, ЧПУ используется для бесчисленных других применений с широким спектром материалов, таких как дерево, титан, алюминий, нержавеющая сталь, серебро и синтетические материалы, поликарбонат.

Некоторые из его наиболее распространенных задач включают:

  • Токарная обработка;
  • Расточка;
  • Контурная обработка;
  • Сверление;
  • Шлифование;
  • Обрезка;
  • Нарезание резьбы;
  • Сварка.

Преимущества производства продукции фрезерной обработкой с ЧПУ.

Снижение трудозатрат .

Фрезерная обработка с ЧПУ требует только одного оператора, чтобы обеспечить бесперебойное выполнение производственного процесса. Это не трудоемкий процесс, а значит, ваши сотрудники могут использовать свои навыки в других областях, требующих большего внимания.

Это особенно важно в тех областях, где требуется человеческий контакт. Если у вас мало сотрудников в производственном отделе, вы можете нанять больше людей в таких отделах, как обслуживание клиентов, которые могут выиграть от ручного труда.

Снижение затрат .

Создание первоклассного продукта предполагает длительный процесс создания прототипов. Хотя это эффективно, это также дорого, поскольку прототипирование – единственный способ убедиться в том, что ваш продукт бракованный или нет. Оборудование с ЧПУ устраняет необходимость в создании прототипов, поскольку оно в значительной степени исключает человеческий фактор и обладает огромными возможностями.

Кроме того, использование фрезерного оборудования с ЧПУ значительно повышает эффективность вашего бизнеса, включая общую эффективность, производительность и эффективное использование ресурсов. Все эти факторы помогают вам снизить себестоимость вашей продукции или услуг.

Более низкие затраты, могут привести к эффективному масштабированию и могут быть использованы для создания конкурентного преимущества в вашей отрасли. Таким образом, когда вы экономите деньги в одной области, вы можете использовать тот же капитал для реинвестирования в свой бизнес и расширения деятельности.

Снижение количества брака.

Где бы ни присутствовал человек или ручной труд, как бы хорошо он ни выполнял задачу, всегда есть возможность для ошибки. Работникам приходится делать перерыв, и даже незначительное отвлечение может повлиять на качество и последовательность операций.

Поскольку станки с ЧПУ работают по цифровому шаблону, такой производственный процесс обеспечивает большую однородность и последовательность. Это особенно полезно для производственных предприятий, выпускающих продукцию в огромных масштабах.

Фрезерная обработка с ЧПУ позволяет получить точный продукт, гарантируя тем самым, что все производимое соответствует требуемым спецификациям. Эти станки отличаются высокой точностью, что делает фрезерование с ЧПУ особенно ценным, если вам требуется постоянство и качество.

Повышение безопасности.

Безопасность на рабочем месте – залог бесперебойной работы, а работа в тесном контакте со станками иногда может привести к травмам, связанным с работой. Хотя наем квалифицированных специалистов, специализирующихся на конкретном станке, может помочь снизить вероятность травм, фрезерные станки с ЧПУ также помогают в этом.

Хотя оператор управляет процессами ЧПУ, они контролируются на расстоянии, обеспечивая минимальный личный контакт со станком. Благодаря меньшему воздействию острых инструментов ваши работники с меньшей вероятностью могут получить травму во время работы.

Большая производительность.

Станки с ЧПУ обеспечивают более высокую производительность, поскольку работают автоматически, без вмешательства человека. Они не нуждаются в постоянном контроле оператора, тем самым автоматизируя трудоемкие и технические процессы.

Поскольку компьютер управляет станками, в результате автоматизации повышается точность и скорость, с которой ваш бизнес может создавать прототипы. Автономная обработка и цифровой шаблон исключают возможность человеческой ошибки, что позволяет тратить время на исправление ошибок и управление производственными процессами на другие цели.

Универсальность.

Возможно, одним из самых больших преимуществ фрезерной обработки с ЧПУ является ее универсальность. Он может работать в различных условиях и поможет вам изготовить распорки, втулки, валы, коллекторы, штампы и другие детали. Широкий спектр функций станка позволяет использовать его для создания любых деталей.

По сути, вам нужен только конструктор, который поможет вам создать шаблон изделия, которое вы хотите изготовить. Используя комбинацию механизмов, таких как фрезерные агрегаты для резки и сверления материала и токарные агрегаты для вращения материалов, оборудование с ЧПУ достаточно гибко для работы с различными видами деталей.

Благодаря своей универсальности, станки с ЧПУ используются для производства деталей для различных отраслей промышленности, таких как аэрокосмическая, автомобильная, строительная, электронная, стоматологическая, а также для производства продуктов питания и напитков. Кроме того, перепрограммирование станка с ЧПУ не занимает много времени, поэтому его можно легко перенастроить для производства совершенно нового продукта. Благодаря этому технология отлично подходит как для коротких, так и для длинных производственных циклов, поскольку вы можете изменить программу без особых затрат.

Заключение.

Как уже отмечалось, фрезерная обработка с ЧПУ может принести множество преимуществ вашему бизнесу. Вы можете повысить производительность, эффективность, безопасность и снизить общие затраты. Благодаря своей безупречной универсальности, фрезерная обработка с ЧПУ открывает бесконечные производственные возможности. Благодаря огромной скорости и точности она может помочь вашему бизнесу увеличить прибыль.

Фрезерная обработка с ЧПУ – это задача, которую стоит решить любому производственному предприятию. Проконсультировавшись с профессионалом, вы сможете определить лучший выбор для вашего бизнеса и гарантировать, что ваша компания будет пользоваться преимуществами этой технологии долгие годы.

Нарезание червячных зубчатых колес.

Нарезание червячных зубчатых колес производится на зубофрезерных станках червячными фрезами способами радиальной или тангенциальной подачи. Наиболее распространенным способом является нарезание с радиальной подачей, который применяется для однозаходных и, реже, двухзаходных колес (рис. 1). Обеспечивается 8—9-я степень точности и А = 15—30 мкм.

Рис. 1. Нарезание червячного колеса с радиальной подачей
1 — нарезаемое колесо;
2— червячная фреза

Способом тангенциальной подачи нарезаются червячные зубчатые колеса к многозаходным червякам (рис. 2). Данный способ позволист получить 9—10-ю степень точности и А = 20—40 мкм.

Рис. 2. Нарезание червячного колеса с тангенциальной подачей:
1 — нарезаемое колесо;
2 — червячная фреза

Нарезание зубьев червячного глобоидного колеса обычно производят за две операции: предварительное нарезание при радиальной подачей чистовое нарезание при круговой подаче. В единичном и мелкосерийном производстве применяют резцы (рис. 3), в серийном, крупносерийном и массовом — глобоидные гребенки и глобоидные фрезы.

Рис. 3. Нарезание червячных колёс резцами комбинированным способом

Нарезание червяков. В единичном, мелкосерийном и серийном производстве червяки нарезают на токарных станках. В крупносерийном и массовом производстве фрезеруются дисковыми фрезами или нарезаются с помощью вихревых головок. Обеспечивается 9-я степень точности и Rz = 10—30 мкм. Шлифование червяков осуществляется дисковыми конусными или тарельчатыми кругами с припуском 0,1—0,2 мм.

Червяки с малым модулем шлифуются на резьбошлифовальном или на токарном станке со спецустройством. В крупносерийном и массовом производстве шлифование червяков с m > 3 осуществляется на специальном червячно-шлифовальном станке коническими дисковыми кругами D > 800 мм (рис. 4).

Рис. 4. Схема шлифования червяка.

Шлифование позволяет получить 7—8-ю степень точности и Ra = 1,25—2,5мкм.

Для отделки витков червяков ответственных передач применяют притирку чугунными или фибровыми притирами, имеющими форму червячного колеса, или обкатку закаленным роликом. Они позволяют получить Ra = 0,2—0,8 мкм.

Эвольвентные червяки в единичном и мелкосерийном производстве нарезают на токарных станках с раздельной обработкой каждой стороны витка. В серийном, массовом производстве эвольвентные червяки фрезеруют фасонными дисковыми, пальцевыми фрезами и фрезами улитками. Это позволяет получить 9-ю степень точности и Rz = 10—20 мкм.

Глобоидные червяки нарезают на зубофрезерных станках с применением специальных устройств.

Нарезание зубьев конических зубчатых колес.

В единичном и серийном производствах при отсутствии зуборезных станков конические зубчатые колеса с прямым и косым зубом можно нарезать на универсально-фрезерном станке с использованием делительной головки дисковыми модульными фрезами (9-10-я степени точности, Rz=20—50 мкм). Для нарезания зубчатых колес 7—8-й (Rz = 10—20 мкм) степеней точности требуются специальные зуборезные станки.

В серийном и массовом производстве прямые зубья конических колес нарезают методом обкатки — зубостроганием (рис. 1). Время нарезания зуба 3,5—30 с.

Рис. 1. Схемы расположения
зубострогальных резов:
а — вначале резания;
б – в конце резания

При этом зубья с m > 2,5 предварительно прорезают профильными дисковыми фрезами методом деления на специальных или специализированных станках. Эти станки снабжаются специальным устройстом для установки нескольких заготовок и их автоматического поворота.

В крупносерийном и массовом производстве ля предварительного нарезания зубьев конических зубчатых колес применяют зуборезные станки для одновременного фрезерования трех заготовок с автоматическим делением, остановом, подводом и отводом стола.

В массовом производстве для обработки прямых зубьев небольших конических колес применяют производительный метод — круговое протягивание зубьев на специальных зубопротяжных станках (рис. 2).

Рис. 2. Схема нарезания зубьев прямозубых конических колес методом кругового протягивания:
а – направление линий резцов; б— в поперечном сечении зуба при черновом зубонарезании; в — по длине зуба при получистовом зубонарезании; г — по длине зуба при чистовом зубонарезании

Режущим инструментом служит круговая протяжка 2, состоящая из нескольких секций, черновых 3 и чистовых 4 резцов.

При черновом и получистовом нарезании протяжка имеет поступательное движение от вершины начального конуса к его основанию, а при чистовом — в обратном направлении. За один оборот она полностью обрабатывает одну впадину.

Нарезание конических зубчатых колес с криволинейными зубьями: производится на специальных станках, работающих методом копирования и обкатки (рис. 3).

Рис. 3. Схема обкатки:
1 — режущая головка; 2 — коническое зубчатое колесо

Режущим инструментом служат режущие головки.Черновое нарезание производится методом копирования. Чистоное — методом обкатки.

В настоящее время зубья конических колес с успехом накатываются и шлифуются.

Обработка зубьев цилиндрических зубчатых колес

Обработку зубьев можно производить методом копирования: протягиванием, накатыванием, шлифованием, фрезерованием дисковыми и пальцевыми фрезами или методом обкатки: червячными фрезами строганием, и долбяками, накатыванием, шлифованием, шевингованием, притиркой.

Нарезание зубьев модульными дисковыми и пальцевыми фрезами заключается в последовательном фрезеровании впадин между зубьями фасонной дисковой или пальцевой модульными фрезами. Такие фрезы изготавливают набором из 8 или 15 шт. для каждого модуля. Обычно применяют набор фрез из 8 шт., обработка которыми позволяет получить зубчатые колеса 9-й степени точности. Такое количество фрез в каждом наборе необходимо потому, что каждая фреза набора предназначена для определенного интервала числа зубьев.

Дисковыми модульными фрезами можно нарезать как прямые, так и косые зубья с малым и большим модулем. Пальцевыми модульными: фрезами нарезают зубья средних и крупномодульных цилиндрических шевронных колес, реек и др. Обработка зубьев цилиндрических 3убчатых колес дисковыми и пальцевыми модульными фрезами производится на горизонтально- и вертикально-фрезерных станках в единичном и мелкосерийном производстве при отсутствии специальных зуборезных станков. Метод малопроизводительный, дает 9—11 квалитет, Rz = 60—80 мкм.

Нарезка зубьев червячными фрезами имеет более высокую производительность и наибольшее распространение, получаемая точность
8—9-й степеней и А = 20—40 мкм. Процесс производится на зубофрезерных станках червячными фрезами и может применяться как для прямых, так и косых зубьев.

Зубчатые колеса с модулем < 2,5 мм нарезают за один ход начисто, с модулем > 2,5 мм нарезают начерно и начисто в два и даже в три хода.

Для черновых ходов применяются двух- и трехзаходные червячные фрезы для повышения производительности.

Зубодолбление долбяками применяют для черновой и чистовой обработки зубчатых колес с внутренним зацеплением и закрытых зубчатых венцов с внешним зацеплением.

Обычные зубчатые колеса средних модулей (2,5—5 мм) пелесообразно предварительно обрабатывать на зубофрезерных станках, а чистовую обработку на зубодолбежных станках с m > 5 мм экономичнее обрабатывать на зубофрезерных станках, с m < 2,5 мм на зубодолбежных станках. Зубодолбление позволяет получить 7—8 степени точности и Rz = 10—20 мкм.

В индивидуальном производстве для неточных зубчатых колес и в условиях ремонта при отсутствии зуборезных станков зубья можно обработать на долбежном или строгальном станках фасонными резцами.

Протягивание зубьев может быть использовано в крупносерийном и массовом производстве для протягивания зубьев зубчатых секторов.

Накатывание зубьев в 15—20 раз производительнее зубонарезания. Зубья модулем до 1 мм накатываются в холодном состоянии, > 1 мм — в горячем состоянии.

В холодном состоянии мелкомодульные зубчатые колеса в условиях единичного, мелкосерийного и серийного производств могут накатываться на токарных станках с продольной подачей (рис. 1).

Рис. 1. Накатывание мелкомодульных зубчатых колес на токарном станке:
1 — заготовки; 2 — накатники; 3 — делительное зубчатое колесо

В крупносерийном и массовом производстве накатывание производится на специальных станках плоскими рейками.

Достигаемая степень точности — 8, шероховатость Ra = 1,2— 2,0 мкм.

Горячее накатывание может производиться как с радиальной, так и продольной подачей. Применяется в крупносерийном и массовом производстве и осуществляется на специальных модульных станках. Нагрев заготовки осуществляется ТВЧ до 1000—1200 °С за 20—30 с до накатывания.

Шевингование — это метод чистовой отделки зубьев зубчатых колес, заключающийся в процессе обкатывания зубчатого колеса с шевером при наличии продольной подачи. Режимы: припуск 0,04— 0,03 мм; скорость вращения шевера v = 100 м/мин; продольная подача Sпр = 0,15—0,3 мм, поперечная подача S = 0,02—0,04 мм на 1 ход стола. Шевингование повышает точность предварительной обработки на 1—2 степени и позволяет получить шероховатость Ra = 0,6—1,0 мкм.

Шевингование применяется в серийном, крупносерийном и массовом производствах в основном для отделки зубьев до термообработки.

Шлифование зубьев применяется для отделки зубьев после термообработки

Шлифование зубьев с эвольвентным профилем производится методом копирования и методом обкатки.

Метод копирования, осуществляемый фасонными кругами, более производительный, но менее точный. Он применяется в крупносерийном и массовом производствах.

Шлифование зубьев методом обкатки производится одним или двумя тарельчатыми кругами на зубошлифовальных станках (рис. 2).

Рис. 2. Шлифование зубьев двумя тарельчатыми кругами

Зубохонингование применяется для чистовой обработки зубьев за каленных цилиндрических колес внешнего и внутреннего зацепления (рис. 3).

Зубчатое колесо осуществляет вращательное и возвратно поступательное движение. Обработка производится на специальных зубохонинговальных станках с режимами: частота вращения хона 180—200 мин-1; подача стола 180—210 мм/мин, число ходов стола 4—6. Время хонингования обычного зубчатого колеса составляет 30—60 с.

Хонингование зубьев позволяет уменьшить шероховатость их поверхности до Ra = 0,32 мкм.

Рис. 3. Зубохонингование цилиндрических колес:
хоном с внешним зацеплением; — хоном с внутренним
зацеплением; 1— хон; 2 — зубчатое колесо

Притирка зубьев (ляппинг-процесс) широко применяется для чистовой окончательной отделки зубьев после термообработки вместо шлифования. Процесс притирки заключается в том, что обрабатываемое зубчатое колесо вращается в зацеплении с чугунными шестернями притирами, приводимыми во вращение и смазываемыми пастой, состоящей из смеси мелкого абразивного порошка с маслом. Кроме того, обычно колесо имеет осевое возвратно-поступательное перемещение.

Притирка позволяет получить Ra = 0,1 мкм и исправить небольшую погрешность. При наличии значительных погрешностей зубчатые колеса необходимо сначала шлифовать, а затем притирать.

Закругление зубьев необходимо производить у зубчатых колес, переключающихся на ходу, для облегчения их включения. Процесс закругления производится специальными пальцевыми фрезами на зубозикругляющих станках.

Пальцевая фреза вращается и одновременно имеет возвратно-поступательное движение, зубчатое колесо имеет вращательное движение (рис. 4).

Рис. 4. Процесс закругления зубьев