Керамика и синтетические сверхтвердые материалы обладают высокими твердостью, износо- и теплостойкостью, благодаря чему обеспечивают значительное повышение производительности и стойкости, высокие точность и качество обработанной поверхности. Их недостатком является низкая прочность режущего клина, которая ограничивает область их применения. Наибольшую эффективность они показали при чистовом точении сталей, особенно закаленных, чугунов различной твердости и даже твердых сплавов с содержанием кобальта выше 25%. При этом обработка должна проводиться на высокоточных, жестких, скоростных и мощных станках с ЧПУ последнего поколения.
Поставляется режущая керамика в виде неперетачиваемых многогранных пластин (ГОСТ 25003-81) круглой, квадратной, треугольной и ромбической форм различных размеров. Негативные керамические пластины крепятся в основном в тех же державках, что и твердосплавные, — прихватом сверху (рис.1, а).
К группе сверхтвердых материалов, как уже отмечалось, относят алмазы (природные и синтетические) и композиты на основе поликристаллов кубического нитрида бора (эльбора).
Так как алмазы имеют очень малые размеры, то их крепление осуществляется пайкой, зачеканкой или механическим путем. Крепление алмаза пайкой осуществляется либо непосредственно в державку (рис.1, б), либо с применением промежуточных вставок (рис.1, в). В последнем варианте вставка прессуется и спекается вместе с алмазом методом порошковой металлургии. Механическое крепление алмаза показано на рис.1, г.
Геометрические параметры заточки алмазных резцов: γ= 0…-5°, α=8…12°, φ=15…45°. Вершина резца в плане выполняется со скруглением r=0,2…0,8 мм или с несколькими фасками (фасетками) (рис.1, д). В сечении, нормальном к режущей кромке, радиус скругления режущего клина достигает величины ρ<1мкм. Благодаря этому алмазное точение позволяет снизить шероховатость обработанной поверхности до Ra 0,08…0,32 мкм и повысить точность обработки до JT 5…7. При точении и растачивании цветных металлов, пластмасс и композиционных материалов стойкость алмазных резцов во много раз выше стойкости твердосплавных резцов. Алмазные резцы могут работать более 200.300 ч без подналадок и смены инструмента, что особенно важно для автоматизированного производства. При этом алмазы массой 0,5…0,6 карата допускают 6…10 переточек.
При точении деталей из закаленных углеродистых сталей, легированных нержавеющих и жаропрочных сталей и сплавов, а также высокопрочных чугунов применяются резцы, оснащенные поликристаллическими сверхтвердыми материалами (ПСТМ) из кубического нитрида бора. В настоящее время промышленностью освоен выпуск таких пластин трехгранной, круглой, квадратной и ромбической форм небольших размеров с диаметром вписанной окружности d = 4…12,7 мм, толщиной 3…5 мм (γ= 0, α=0…11°). Крепление таких пластин осуществляется прихватом сверху.
В последние годы стали применяться двухслойные пластины, которые представляют собой твердосплавную пластину с нанесенным слоем поликристаллов кубического нитрида бора на ее наружной поверхности или с напайками по ее уголкам (рис.1, е). Такие пластины имеют более крупные размеры и их можно крепить механическим путем в державках, применяемых для крепления твердосплавных пластин.
Твердосплавные резцы — это резцы, оснащенные пластинами твердого сплава, обеспечивающие высокую производительность и получившие наибольшее распространение на практике.
Пластины крепятся к державке пайкой или механическим путем. Цельные твердосплавные резцы изготавливают только малых размеров (они применяются в приборостроении и часовой промышленности).
Использование пайки стандартных пластин из твердого сплава, имеющих разнообразную форму, позволяет получать компактные конструкции резцов. Последние после заточки имеют оптимальные значения геометрических параметров и характеризуются эффективным использованием твердого сплава благодаря многократной переточке.
Однако пайке присущ такой существенный недостаток, как появление внутренних термических напряжений в спае и в самих пластинах из-за большой разницы (примерно в 2 раза) коэффициентов линейного расширения твердого сплава и стальной державки. При охлаждении после пайки возникающие напряжения приводят к образованию микротрещин в пластинах, которые вскрываются при заточке или в процессе резания. Микротрещины приводят к выкрашиванию и даже к поломкам пластин. Обычно применяемые технологические приемы по снятию напряжений: релаксация путем замедления скорости охлаждения, использование компенсационных прокладок и другие — не решают полностью этой проблемы. Избавиться от напряжений можно только путем применения СМП, которые механически крепятся к корпусу инструмента. По мере затупления пластин путем их поворота производится обновление режущих кромок, что обеспечивает их быстросменность и не требует переточек.
Инструменты, оснащенные СМП, по сравнению с напайными имеют следующие преимущества:
более высокая прочность, надежность и стойкость;
меньше расходы на смену и утилизацию пластин;
меньше простои оборудования при замене и наладке
инструмента, что особенно важно при эксплуатации современных дорогостоящих
станков с ЧПУ и автоматических линий;
более благоприятные условия для нанесения на
пластины износостойких покрытий, что позволяет значительно (до 4…5 раз)
повысить их стойкость, а следовательно, и производительность процесса резания;
меньше потери остродефицитных материалов
(вольфрама, кобальта, тантала и др.) за счет увеличения возврата пластин на
переработку.
Недостатки инструментов, оснащенных СМП:
высокая стоимость из-за их высокой точности, а
следовательно, высокой трудоемкости изготовления пластин и инструмента в целом;
повышенные габариты корпусов инструментов из-за
необходимости размещения в них элементов крепления пластин;
невозможность полного обеспечения оптимальной
геометрии режущей части инструмента из-за заданной формы пластин и условий их
крепления.
По числу режущих кромок и форм пластины имеют различные исполнения, закрепленные в международных и национальных стандартах. Некоторые из них приведены на рис.1, а.
Геометрические параметры инструментов, оснащенных СМП, определяют в статике при изготовлении пластин и корректируют при их закреплении в корпусе (державке) инструмента с учетом кинематики станка и условий резания.
Задний угол при установке негативных и негативно-позитивных пластин создается за счет их поворота при креплении в державке резца. При этом у негативных пластин передние углы становятся отрицательными, т.е. (-γ)=α , у негативно-позитивных пластин угол γ уменьшается на величину угла α. У позитивных пластин угол γ равен углу поворота пластины по часовой стрелке, а угол α уменьшается на эту же величину.
Существует множество конструкций резцов, различающихся по способу крепления СМП, часть которых с целью удобства крепления изготавливают с отверстиями. Анализ многочисленных конструктивных решений крепления пластин позволил свести их к следующим схемам (по ISO): а) прихватом сверху; б) рычагом через отверстие с прижатием к боковым стенкам гнезда; в) винтом с конической головкой; г) штифтом через отверстие и прихватом сверху. Некоторые примеры конструктивного исполнения этих схем на резцах приведены на рис.2.
Пластины негативные и негативно-позитивные крепятся чаще всего
прихватом сверху (схема а) или по схеме г. Последняя обеспечивает
более надежное крепление. Крепление винтом (схема в) используется для
малонагруженных пластин и является простым и компактным.
У резцов наибольшее распространение получили пластины с отверстием. Благодаря этому обеспечиваются свободный сход стружки по передней поверхности и значительно меньшие габариты элементов крепления, размещаемых в корпусе державки.
Возможны нестандартные схемы крепления твердосплавных пластин нестандартной формы. Примером этому являются отрезные резцы (рис.2, д), разработанные фирмой «Sandvik Coromant» (Швеция). Здесь крепление пластины осуществляется силами упругой деформации стенки паза державки.
Подрезные резцы (рис.1, а, б) изготавливают с отогнутой и прямой державками. Хотя отогнутая державка усложняет изготовление резцов, она обеспечивает следующие преимущества: 1) универсальность, так как проходные резцы могут работать напроход и на подрезание; 2) возможность вести обработку в менее доступных местах.
Расточные резцы (рис.1, в, г) используют для обработки внутренних сквозных и глухих отверстий, а также внутренних канавок. Из-за большого вылета державки, уменьшенной площади ее сечения и затрудненного отвода стружки расточные резцы работают в более тяжелых условиях, чем проходные резцы. Державки расточных резцов выполняют круглыми, а в месте крепления они имеют утолщение квадратного сечения. Диаметр державки зависит от диаметра обрабатываемого отверстия и равен dд = (0,5…0,8)do, где do — диаметр обрабатываемого отверстия.
Расточные резцы имеют малую виброустойчивость и
жесткость. Чтобы исключить врезание задней поверхности резца в поверхность
резания, лезвие резца располагают несколько ниже оси отверстия, а заднюю
поверхность выполняют криволинейной формы.
Отрезные резцы (рис.1, д) применяют для отрезки заготовок из прутка и проточки наружных канавок в заготовках на токарных, револьверных станках и станках-автоматах.
Из-за тяжелых условий работы (большой вылет резца, затрудненные условия деформации металла при переходе в стружку, малая жесткость режущей части и, следовательно, низкая виброустойчивость) отрезные резцы чаще всего изготавливают из быстрорежущей стали. Режущая часть имеет главную режущую кромку с углом φ = 90° и две вспомогательные кромки с углами φ1=1°30’…3°. Если нужно обработать торец заготовки без оставления стержня (бобышки) в ее центре, то главную режущую кромку затачивают под углом φ=75…80°.
При использовании напайных твердосплавных
режущих пластин длина главной режущей кромки отрезного резца должна быть не
менее 5 мм. Для повышения жесткости в вертикальной плоскости головка резца
обычно делается утолщенной, а режущая кромка во избежание отрыва
твердосплавной пластины устанавливается ниже оси центров станка на расстоянии
0,5.1,0 мм.
Передний угол у оказывает большое влияние на виброустойчивость отрезных резцов, которая снижается с его уменьшением. Поэтому рекомендуется затачивать угол γ = 15…20° с упрочняющей фаской шириной f = 0,2…0,3 мм и под углом γф = 0…-5°, задний угол α = 10…12°.
Строгальные и долбежные резцы (рис.1, е, ж) — это инструменты, работающие с ударной нагрузкой в момент периодически повторяющегося врезания. Из-за консольного крепления таких резцов со сравнительно большим вылетом их державки подвергаются упругим деформациям и вибрациям. Эти резцы работают со сниженными скоростями резания из-за больших инерционных масс и сечениями среза, в 1,5…2 раза большими, чем при токарной обработке. По этим причинам условия резания неблагоприятны для использования твердосплавных пластин. Поэтому чаще всего эти резцы изготавливают из быстрорежущих сталей.
Во избежание внедрения задней поверхности строгального резца в обработанную поверхность заготовки из-за упругих деформаций державки его вершина должна быть расположена на одном уровне с опорной поверхностью, и поэтому державка имеет изогнутую форму.
На рис.1, е показаны геометрические параметры строгальных резцов при несвободном и свободном резании (без вспомогательных кромок), а на рис.1, ж показаны углы γ и α долбежных резцов. На примере свободного строгания можно дать другое определение угла наклона главной режущей кромки λ — это угол между вектором скорости резания и нормалью к проекции главной режущей кромки на плоскость резания, которая в данном примере совпадает с обработанной поверхностью. Такое определение λ применимо также к другим видам инструментов, например к сверлам и фрезам.
Величины геометрических параметров строгальных и долбежных резцов обычно принимают близкими к принятым для токарных резцов, за некоторыми исключениями. Так, для предохранения выкрашивания вершины резцов при работе с ударами угол λ увеличивают до 10…120. При несвободном строгании главный угол в плане рекомендуется брать равным φ = 20…45 0. Для чистовых операций (под шабрение) желательно снижать угол φ1 до нуля.
Из всех видов токарных резцов наиболее
распространенными являются проходные резцы. Они предназначены для точения
наружных поверхностей, подрезки торцов, уступов и т.д.
Призматическое тело проходного резца (рис. 1), как и любо го другого, состоит из режущей части (головки) и державки. Головка резца содержит переднюю 1, главную заднюю 2 и вспомогательную заднюю 3 поверхности. Пересечения этих поверхностей образуют главную 4 и вспомогательную 5 режущие кромки.
По передней поверхности сходит снимаемая резцом стружка. Главная задняя поверхность обращена к поверхности резания, образуемой главной режущей кромкой, а вспомогательная задняя поверхность – к обработанной поверхности детали.
Указанные поверхности и режущие кромки после заточки располагаются под определенными углами относительно двух координатных плоскостей и направления подачи, выбираемыми с учетом кинематики станка.
За координатные плоскости (рис.2) принимают две взаимно перпендикулярные плоскости: 1) плоскость резания, проходящую через главную режущую кромку, и вектор скорости резания, касательный к поверхности резания, и 2) основную плоскость, проходящую через эту же кромку и нормаль к вектору скорости резания.
Есть другое определение основной плоскости: это плоскость, проходящая через векторы продольной Sпр и радиальной Sр подач. В частном случае она может совпадать с основанием резца. В этом случае возможно измерение углов резца вне станка в его статическом положении.
За вектор скорости резания,
применительно к резцам, а также ко многим другим инструментам, принимают вектор
окружной скорости детали без учета вектора продольной подачи, который во много
раз меньше вектора окружной скорости и не оказывает заметного влияния на
величину передних и задних углов. Только в отдельных случаях, применительно,
например, к сверлам, в точках режущих кромок, прилегающих к оси сверла, это
влияние становится существенным.
На рис. 2 представлены вид заготовки и резца в плане и геометрические параметры, обязательно указываемые на рабочих чертежах резцов: γ, α, α1, λ, φ, φ1. Ниже даны определения и рекомендации по назначению их величин.
Передний и задний углы главной режущей кромки принято измерять в главной секущей плоскости N-N, проходящей нормально к проекции этой кромки на основную плоскость, которая в данном случае совпадает с плоскостью чертежа. Плоскость N-N выбрана в связи с тем, что именно в ней происходит деформация металла при резании.
Передний угол γ — это угол между основной плоскостью и плоскостью, касательной к передней поверхности. Величина этого угла оказывает на процесс резания определяющее влияние, так как от него зависят степень деформации металла при переходе в стружку, силовая и тепловая нагрузки на режущий клин, прочность клина и условия отвода тепла из зоны резания. Оптимальное значение переднего угла γ определяется опытным путем в зависимости от физико-механических свойств обрабатываемого и режущего материалов, факторов режима резания (v, s, t) и других условий обработки. Возможные значения угла γ находятся в пределах 0…300. Для упрочнения режущего клина, особенно изготовленного из хрупких режущих материалов, на передней поверхности затачивают фаску с нулевым или отрицательным передним углом (γф=0…-5°) , шириной f, зависящей от подачи.
Задний угол α — это угол между плоскостью резания и плоскостью, касательной к задней поверхности. Фактически это угол зазора, препятствующего трению задней поверхности резца о поверхность резания. Он влияет на интенсивность износа резца и в сочетании с углом γ влияет на прочность режущего клина и условия отвода тепла из зоны резания.
Чем меньшую нагрузку испытывает режущий клин и чем он прочнее, тем больше значение угла α. Его величина зависит, таким образом, от сочетания свойств обрабатываемого и режущего материалов, от величины подачи и других условий резания. Например, для резцов из быстрорежущей стали при черновой обработке конструкционных сталей α=6…8°, для чистовых операций — α=10.. .12°.
Угол наклона главной режущей кромки λ — это угол между основной плоскостью, проведенной через вершину резца, и режущей кромкой. Он измеряется в плоскости резания и служит для предохранения вершины резца А от выкрашивания, особенно при ударной нагрузке, а также для изменения направления сходящей стружки. Угол λ считается положительным, когда вершина резца занижена по сравнению с другими точками главной режущей кромки и в контакт с заготовкой включается последней. Стружка при этом сходит в направлении обработанной поверхности (от точки В к точке А), что может существенно повысить ее шероховатость. При черновой обработке это допустимо, так как после нее следует чистовая операция, снимающая эти неровности. Но при чистовых операциях, когда нагрузка на режущий клин невелика, первостепенное значение приобретает задача отвода стружки от обработанной поверхности. С этой целью назначают отрицательные значения угла (- λ ). При этом вершина резца А является наивысшей точкой режущей кромки, а стружка сходит в направлении от точки А к точке В.
Наличие угла λ усложняет заточку резцов. Поэтому практические значения этого угла невелики и находятся в пределах λ = +5…-5°.
Углы в плане φ и φ1 (главный и вспомогательный) — это углы между направлением продольной подачи Sпр и, соответственно, проекциями главной и вспомогательной режущих кромок на основную плоскость. Главный угол в плане φ определяет соотношение между толщиной и шириной срезаемого слоя. При уменьшении угла φ стружка становится тоньше, улучшаются условия теплоотвода и тем самым повышается стойкость резца, но при этом возрастает радиальная составляющая силы резания. При обточке длинных заготовок малого диаметра это может привести к их деформации и вибрациям. В этом случае принимается угол φ=90°.
Для других случаев
рекомендуется:
при чистовой обработке φ=10.. .20°;
при черновой обработке валов (l/d = 6…12) φ= 60…75°;
при черновой обработке более жестких заготовок φ= 30…45°.
Вспомогательный угол в плане φ1 оказывает влияние на высоту h остаточных гребешков (шероховатости) на обработанной поверхности, величина которых возрастает с увеличением φ1 и подачи s.
У проходных резцов обычно угол φ1=10…15°. С уменьшением угла φ1 до 0° величина h также уменьшается до нуля, что позволяет значительно увеличить подачу, а следовательно, и производительность процесса резания.
Вспомогательный задний угол α1, измеряемый в сечении N1—N1, перпендикулярном к вспомогательной режущей кромке, принимается примерно равным углу α. Он образует зазор между вспомогательной задней поверхностью и обработанной поверхностью заготовки.
Вспомогательный передний угол γ1 определяется заточкой передней поверхности и на чертеже обычно не указывается.
С целью повышения прочности режущей части резца предусматривается также радиус скругления его вершины в плане: r = 0,1…3,0 мм. При этом большее значение радиуса применяется при обработке жестких заготовок, так как с увеличением этого радиуса возрастает радиальная составляющая силы резания.
Одним из наиболее простых и распространенных металлорежущих инструментов является резец. Резцы применяются на токарных, револьверных, строгальных и других станках. В зависимости от вида станка и рода выполняемой работы применяются резцы различных типов. Основные типы токарных резцов изображены на рис. 1. Для обточки наружных поверхностей вращения, т. е. цилиндрических валиков, конических поверхностей большой длины и им подобных деталей, применяют проходные резцы. Проходные резцы бывают прямые (рис. 1, а) и отогнутые (рис. 1, б). Отогнутые резцы получили широкое применение из-за их универсальности, большей жесткости, возможности вести обработку в менее доступных местах. Отогнутыми резцами можно работать при продольной и поперечной подачах и вести обточку поверху, подрезку торцов, снятие фасок. Проходные резцы могут быть черновые и чистовые. Чистовые резцы имеют больший радиус закругления, что обеспечивает получение более чистой обработанной поверхности. Если необходимо получить особенно чистую и гладкую поверхность, применяют широкие лопаточные резцы. Эти резцы работают с большой подачей. Однако при значительной длине контакта режущей кромки с заготовкой они склонны к вибрациям, дрожанию.
Проходные упорные резцы (рис. 1, е) имеют угол в плане φ = 90° и применяются при обточке ступенчатых валиков и подрезке буртиков, а также при точении нежестких деталей.
Подрезные резцы предназначаются для обточки плоскостей, перпендикулярных оси вращения, подрезки торцов на проход (рис. 1, г). Эти резцы работают с поперечной подачей. Расточные резцы служат для обработки отверстий (рис. 1, д, е). Они работают в менее благоприятных условиях, чем проходные резцы для наружной обточки. Расточные резцы должны иметь меньшие поперечные размеры, чем обрабатываемое отверстие. Они получаются длинными. Вылет резца должен быть больше длины растачиваемого отверстия. В силу малой жесткости расточные резцы склонны к вибрациям, что не дает возможности снимать стружку большого сечения.
При расточке длинных отверстий и отверстий большого диаметра широко применяют державки (оправки) со вставными резцами круглого или квадратного сечения малых размеров. Пользуясь державками, расточку отверстия можно производить при помощи одностороннего резца с одной режущей частью, двухстороннего резца, имеющего режущие части с обоих торцов, резцовой головки, состоящей из нескольких резцов.
По сравнению с односторонними резцами двухсторонние резцы и резцовые головки позволяют обеспечить более высокую производительность обработки. Однако обработка одним резцом имеет и некоторые преимущества. При чистовой обработке и снятии небольших припусков затрудняется установка резцов резцовой головки с требуемой точностью, в результате чего в работе участвуют не все резцы. Кроме того при срезании твердых включений ось отверстия будет искривленной вследствие отклонения всей головки, что может послужить причиной брака. При работе же одним резцом в таких случаях отклонение резца поведет лишь к уменьшению размеров отверстия, что можно исправить при дальнейшей обработке.
Соотношение диаметров растачиваемого отверстия и оправки должно быть подобрано так, чтобы обеспечить оптимальный вылет резца. Большой вылет резца понижает жесткость, способствует возникновению колебаний и нарушает устойчивость процесса. Малые же зазоры между поверхностями отверстия и оправки затрудняют выход стружки. На практике соотношение между диаметром резца и диаметром оправки колеблется в пределах 0,3—0,2. Отношение диаметра оправки к диаметру растачиваемого отверстия составляет 0,8—0,5.
При обработке отверстий на токарных, револьверных, расточных станках пользуются державками со вставными резцами.
Отрезные резцы служат для отрезания материала от прутков сравнительно небольшого диаметра (рис. 1, ж). Они выполняются с оттянутой головкой, т. е. ширина головки выполняется меньше ширины тела резца. Длина оттянутой головки выбирается из расчета свободной отрезки заготовки. Отрезные резцы работают в весьма тяжелых условиях, так как их рабочая часть имеет малую жесткость, а отвод стружки из зоны резания затруднен. Головка резца имеет относительно малую толщину. Чтобы не ослаблять в значительной степени головку, для отрезных резцов приходится принимать небольшие значения углов (порядка 1—3°) в плане и задних углов аг на вспомогательных боковых режущих кромках. Это приводит к возрастанию трения, особенно при неточной установке резца или его некачественной заточке. Поэтому при работе отрезными резцами, оснащенными твердым сплавом, часто происходят выкрашивания и сколы режущей части, а также отрывы пластинки от державки резца. Для повышения прочности соединения пластинки с державкой целесообразно пластинку, снабженную скосами, напаивать в угловой паз державки (рис. 2, а), что соответственно увеличивает площадь прилегания ее к державке. Кроме того, боковые стенки паза препятствуют смещению пластинки под действием боковых усилий, возникающих в процессе работы резца.
С целью повышения прочности и жесткости головки высота ее делается больше высоты стержня (рис. 2, б). Отрезной резец при работе обычно не срезает весь металл среза, так как в определенный момент отрезаемая заготовка отламывается и в центре остается несрезанный стержень. Если необходимо полностью обработать один из торцов, не оставляя на нем центрального стержня, то главную режущую кромку резца оформляют под углом φ — 75 — 80° (рис. 2, в), в то время как у обычных отрезных резцов угол в плане φ = 90°.
Находят применение также отрезные резцы с симметричной ломаной режущей кромкой (рис. 2, г) с углами в плане φ = 60 — 80°. Такое оформление режущей части резца облегчает его врезание в заготовку, улучшает условия схода стружки, снижает возможность увода резца. С этой же целью на отрезных резцах с углом φ = 90° выполняют фаски f с обеих сторон размером 1— 1,5 мм под углом 45°. Наряду с токарными используются резцы на строгальных и долбежных станках с прямолинейно-поступательным движением резания. Строгальные резцы работают в более тяжелых условиях, чем токарные, так как, врезаясь в обрабатываемый материал с полным сечением среза, резец испытывает удар, что отрицательно сказывается на его стойкости.
По роду выполняемой работы строгальные резцы разделяются на проходные (обдирочные и чистовые), отрезные, подрезные, пазовые и специальные (рис. 3). Проходные строгальные резцы (рис. 3, а) предназначены для строгания плоскостей с горизонтальной подачей, а подрезные резцы (рис. 3, б) — для обработки вертикальных плоскостей с вертикальной подачей. Отрезные и прорезные строгальные резцы (рис. 3, в) используются при отрезке и прорезке узких пазов. Чистовые широкие лопаточные резцы (рис. 3, г) применяются для чистовой обработки плоскостей с большой подачей. Для обеспечения плавного врезания и выхода инструмента целесообразно применять строгальные резцы с углом наклона режущей кромки λ который в зависимости от условий обработки может колебаться от 10 до 60° . Строгальные резцы бывают прямые и изогнутые. Прямые резцы просты в изготовлении, но менее виброустойчивы по сравнению с изогнутыми. Поэтому они применяются при малых величинах вылета. В случае работы с большими вылетами рекомендуется пользоваться изогнутыми резцами, которые получили широкое распространение в промышленности. В процессе строгания резец под воздействием усилий резания изгибается. При изгибе прямого резца его режущая часть будет углубляться в материал заготовки и резец будет работать с заеданием, что снижает качество обработки и дополнительно нагружает инструмент. При изгибе же изогнутого резца его режущая часть будет отходить от заготовки и срезать меньший слой металла. Это обеспечивает более спокойное протекание процесса резания, особенно при резких колебаниях усилий резания, вызываемых изменениями сечения срезаемого слоя, локальными изменениями свойств обрабатываемого материала и т. п.
Долбежные резцы применяются при обработке внутренних линейчатых поверхностей на долбежных станках в единичном и мелкосерийном производстве. В зависимости от характера выполняемой работы находят применение проходной двухсторонний шпоночный или прорезной резцы (рис. 4).
Следует подчеркнуть, что резцы являются наиболее распространенными, универсальными и простыми инструментами. Приведенный обзор основных типов резцов не исчерпывает всего многообразия их, используемого в машиностроении.