Покрытые электроды для дуговой сварки и наплавки

Покрытые электроды для дуговой сварки и наплавки

Покрытие электрода

Покрытый электрод — плавящийся электрод для дуговой сварки, имеющий на поверхности покрытие, адгезионно связанное с металлом электрода.

Покрытие электрода — смесь веществ, нанесенная на электрод для уси­ления ионизации, защиты от вредного воздействия среды и металлургической обработки металла сварочной ванны.

В покрытие электрода вводят следующие материалы (компоненты): ионизирующие, газообразующие, шлакообразующие, легирующие, раскисляющие, связующие и формовочные.

Ионизирующие, или стабилизирующие, компоненты вводят для обеспече­ния устойчивого горения дуги. Они содержат элементы с низким потенциалом ионизации, такие как калий, кальций, которые содержатся в меле, полевом шпате и граните, а также натрий и др.

Газообразующие компоненты вводят для создания газовой защиты зоны дуги и сварочной ванны. К ним относятся органические вещества: крахмал, пищевая мука, декстрин и др., а также неорганические вещества: обычно карбонаты (мрамор СаСО3, магнезит MgCO3) и др. Газовая защита образуется в результате диссоциации органических веществ при температуре выше 200°С и диссоциации карбонатов при температуре около 900°С. Процесс диссоциации происходит недалеко от торца электрода. При обычном составе электродных покрытий на каждый грамм металла электродного стержня выделяется 90­-120 см3 защитного газа, состоящего из углекислого газа СО2, угарного газа СО, водорода Н2 и кислорода О2. При этом обеспечивается достаточно надежное от­теснение воздуха из зоны сварки и попадание очень небольшого количества азота в металл шва (не свыше 0,02-0,03%).

Шлакообразующие компоненты вводят для образования жидких шлаков. В качестве шлакообразующих используют руды и минералы: ильменит, ру­тил, полевой шпат, кремнезем, гранит, мрамор, плавиковый шпат и др. В со­став шлакообразующих входят окислы СаО, MgO, МпО, FeO, А12О3, SiO2, TiO2, Na2O, плавиковый шпат СаF2 и др. Имеющиеся в покрытии ферросплавы свя­зывают кислород, который отдают при нагревании шлакообразующие окислы, входящие в покрытие. Жидкий шлак, покрывая расплавленный металл электродных капель и сварочной ванны, химически взаимодействуя с расплав­ленным металлом, раскисляет металл шва и связывает окислы в легкоплавкие соединения. В то же время происходит легирование металла шва элементами, содержащимися в шлаке. Жидкий шлак пропускает (впитывает в себя) газы, выделяющиеся в процессе химических реакций в жидком металле, и формиру­ет поверхность сварного шва.

Легирующие компоненты предназначены для придания металлу шва повы­шенных механических свойств, жаростойкости, износостойкости, коррозионной стойкости и других свойств. Легирующими элементами служат хром, марганец, титан, ванадий, молибден, никель, вольфрам и другие элементы. Легирующие элементы вводят в покрытие в виде ферросплавов и чистых металлов.

Раскисляющие компоненты вводят для раскисления (восстановления) ча­сти расплавленного металла, находящегося в виде окислов. К ним относят­ся элементы, имеющие большее, чем железо (при сварке сталей), сродство к кислороду и другим элементам, окислы которых требуется удалить из ме­талла шва. Большинство раскислителей вводится в электродное покрытие в виде ферросплавов.

Связующие компоненты применяют для связывания порошковых состав­ляющих покрытия в однородную вязкую массу, которая будет крепко удержи­ваться на стержне электрода при опрессовке и образовывать прочное покрытие после сушки и прокалки. В качестве связующих чаще всего применяют водные растворы натриевого (Na2O SiO2) или калиевого (K2O SiO2) жидкого стекла.

Формовочные компоненты — вещества, придающие обмазочной массе луч­шие пластические свойства: бентонит, каолин, декстрин, слюда и др.

Некоторые материалы в покрытии выполняют несколько функций, напри­мер: мрамор является одновременно стабилизирующим, шлакообразующим и газозащитным компонентом, а ферросплавы — легирующими и раскисляю­щими компонентами.

Покрытие электродов оказывает существенное влияние на весь про­цесс сварки. Поэтому к покрытию предъявляются следующие требования: обеспечение стабильного горения дуги; получение металла шва с необходи­мым химическим составом и свойствами; спокойное, равномерное плавление электродного стержня и покрытия; хорошее формирование шва и отсутствие в нем пор, шлаковых включений и др.; легкая отделимость шлака с поверх­ности шва после остывания; хорошие технологические свойства обмазочной массы, не затрудняющие процесса изготовления электродов; удовлетвори­тельные санитарно-гигиенические условия труда при изготовлении электро­дов и сварке. Состав покрытия определяет и такие важные технологические характеристики электродов как: род и полярность сварочного тока, возмож­ность сварки в различных пространственных положениях или определенным способом (сварка опиранием, наклонным электродом и т. д.). Состав покры­тия электродов и свойства образующихся шлаков определяют и величину ре­комендуемого для сварки тока. Для получения качественных сварных швов покрытие электрода должно удерживаться на металлическом стержне и быть сплошным до конца использования электрода (огарка), чтобы обеспечить необходимую защиту зоны сварки. Поэтому нагрев металлического стержня, определяемый величиной сварочного тока, к концу расплавления электрода не должен быть более 500°С, а с покрытиями, содержащими органические ве­щества, не более 250°С.

К физическим свойствам шлака, образуемого покрытием, относят темпе­ратуру плавления, температурный интервал затвердевания, теплоемкость, теплопроводность, теплосодержание, вязкость, газопроницаемость, плотность, поверхностное натяжение, тепловое расширение (линейное и объемное). Все электродные покрытия должны обеспечивать при их плавлении плотность шлака ниже плотности жидкого металла для обеспечения всплывания шлака из сварочной ванны. Температурный интервал затвердевания шлака должен быть ниже температуры кристаллизации металла сварочной ванны для пропу­скания газов, выделяющихся из сварочной ванны. Наилучшие качества при сварке имеют шлаки, если температура плавления их составляет 1100-1200°С. В зависимости от изменения вязкости шлака от температуры различают шла­ки «длинные» и «короткие». «Длинные» шлаки, у которых переход от жидко­го к твердому состоянию растянут на значительный температурный интервал, при прочих равных условиях хуже обеспечивают формирование шва. У «ко­ротких» шлаков возрастание вязкости расплавленного шлака с понижением температуры происходит быстро и закристаллизовавшийся шлак препятству­ет стеканию металла шва, находящегося еще в жидком состоянии при сварке в различных пространственных положениях. «Короткие» шлаки дают элек­троды с основным покрытием. Вязкость шлака имеет важное значение. Чем менее вязок шлак, тем больше его подвижность, а следовательно, физическая и химическая активность, тем быстрее в нем протекают химические реакции и физические процессы растворения окислов, сульфидов и т. п. Кислые шлаки обычно бывают очень вязкими и длинными, при этом вязкость возрастает с по­вышением кислотности.

Затвердевшие шлаки должны иметь небольшое сцепление с металлом, коэффициенты линейного расширения шлака и металла должны быть различными для более легкого отделения шлака со шва.

К химическим свойствам относится способность шлака раскислять металл шва, связывать окислы в легкоплавкие соединения и легировать металл шва.

К сварочно-технологическим свойствам электродов относят легкое возбуж­дение дуги, стабильное горение дуги на оптимальных режимах для данного диаметра и марки, возможность сварки на постоянном и переменном токах, пригодность для сварки в различных пространственных положениях. Кроме этого, покрытие должно плавиться равномерно, без чрезмерного разбрызгива­ния, отваливания кусков и образования козырька, препятствующего нормаль­ному плавлению электрода. Образующийся при сварке шлак должен обеспе­чить благоприятную гладкую форму шва и легко удаляться после охлаждения.

Виды электродных покрытий.

ГОСТ9466-75 «Электроды покрытые металлические для руч­ной дуговой сварки сталей и наплавки. Классификация, размеры и общие тех­нические требования» подразделяет электроды на следующие виды: А — с кис­лым покрытием; Б — с основным покрытием; Ц — с целлюлозным покрытием; Р — с рутиловым покрытием; П — с покрытием прочих видов. С покрытием смешанного вида используют соответствующее двойное обозначение. Если по­крытие содержит железный порошок в количестве более 20%, к обозначению вида покрытия добавляют букву Ж.

У электродов с кислым покрытием (А) шлакообразующую основу состав­ляют железные (гематит — Fe2O3) и марганцевые (MnO2) руды и кремнезем (SiO2). Газовая защита расплавленного металла осуществляется органически­ми компонентами, сгорающими в процессе плавления электрода. В качестве раскислителей в покрытие вводят ферромарганец. Образующиеся кислые шлаки не содержат СаО и не очищают металл от серы и фосфора. В наплавлен­ном металле много растворенного кислорода (до 0,12%), водорода (до 15 см3 в 100 г металла) и неметаллических включений. В результате швы облада­ют пониженной стойкостью к образованию горячих трещин и пониженной ударной вязкостью. Электроды непригодны для сварки сталей, легирован­ных кремнием и другими элементами, так как они интенсивно окисляются. При сварке спокойных низкоуглеродистых сталей с высоким содержанием кремния возможно образование пор. При сварке выделяется много токсич­ной пыли, содержащей окислы марганца и кремния и происходит повышен­ное разбрызгивание. Достоинствами этих электродов являются: стабильное горение дуги на постоянном и переменном токах; возможность сварки в раз­личных пространственных положениях; отсутствие пор при наличии на сва­риваемых поверхностях окалины или ржавчины, а также при случайном удлинении дуги; достаточно высокая скорость расплавления и высокая про­плавляющая способность. Типичными для этого вида покрытия являются электроды марок МЭЗ-04 и СМ-5. В настоящее время электроды с кислым по­крытием выпускают в малом объеме. Эти электроды применяют для сварки неответственных металлоконструкций.

У электродов с рутиловым видом покрытия (Р) шлакообразующую основу составляют: рутиловый концентрат, содержащий до 45% рутила (TiO2); алюмосиликаты — слюда (К2О 3Al2O3 6SiO2 2H2O), полевой шпат (К2О Al2O3 6SiO2), каолин (Al2O3 2SiO2 2H2O) и др.; карбонаты — мрамор (СаСО3) и магне­зит (MgCO3). Газовая защита расплавленного металла обеспечивается введе­нием органических соединений (до 5%), а также разложением карбонатов. Наплавленный металл раскисляется и легируется ферромарганцем (до 10-­15%). Поскольку окислительная способность рутилового покрытия меньше, чем кислого, количество марганца в нем ниже и его гигиенические характе­ристики гораздо лучше, чем у кислого. Содержание окислов марганца в аэро­золе при сварке меньше, чем у кислого в 3-5 раз. По качеству наплавленного металла электроды занимают промежуточное положение между электродами с кислым и основным покрытиями. Электроды обладают высокими сварочно­технологическими свойствами: обеспечивают отличное формирование шва с плавным переходом к основному металлу, малое разбрызгивание, легкую от­делимость шлака, стабильное горение дуги на постоянном и переменном токах, сварку во всех пространственных положениях. Металл шва мало склонен к об­разованию пор при колебаниях длины дуги, при сварке по окисленной и за­грязненной поверхности. Наплавленный металл соответствует по химическо­му составу полуспокойной или спокойной стали. К электродам с покрытием этого вида относятся электроды марок АНО-4, ОЗС-12 и др. Для повышения коэффициента наплавки в покрытия этого вида часто вводят порошок железа. При содержании железа в покрытии до 35% от массы покрытия (в электродах марок АНО-5, ОЗС-6 и др.) электродами можно варить в различных простран­ственных положениях. Электроды, содержащие в покрытии железного порош­ка 50-65% (например, электроды марок АНО-1, ОЗС-3 и др.) предназначены для высокопроизводительной сварки швов большой протяженности изделий толщиной 10-20 мм. Разбавляя металл сварочной ванны низкоуглеродистым железным порошком, можно существенно увеличить стойкость металла шва к образованию кристаллизационных трещин. Электроды с рутиловым видом покрытия применяют для сварки металлоконструкций и трубопроводов из углеродистых и низколегированных сталей с временным сопротивлением до 490 МПа.

Электроды с основным видом покрытия (Б) имеют шлакообразующую основу покрытия, состоящую из карбонатов (мрамор, мел, магнезит) и фто­ридов кальция (например, плавиковый шпат — CaF2). Газовая защита рас­плавленного металла обеспечивается углекислым газом и окисью углерода, образующимися при диссоциации карбоната кальция в процессе нагрева и плавления покрытия. В качестве раскислителей покрытие может содержать ферромарганец, ферросилиций, ферротитан и ферроалюминий. Покрытия этого вида слабоокисленные, поэтому позволяют легировать расплавленный металл элементами с большим сродством к кислороду. Легирование осущест­вляется марганцем и кремнием при переходе их из ферромарганца и ферроси­лиция в сварочную ванну, что придает соединению высокую прочность. Кроме этого, для легирования в покрытие могут вводить металлические порошки. Наличие в покрытии большого количества соединений кальция, хорошо свя­зывающих серу и фосфор с выделением их в шлак, обеспечивает высокую чи­стоту наплавленного металла с малым содержанием серы и фосфора. Плави­ковый шпат при высоких температурах разлагается с выделением атомарного фтора, который связывает водород в устойчивую, нерастворимую в металле молекулу HF. В результате наплавленный металл содержит незначительное количество водорода (4-10 см3 в 100 г наплавленного металла). Применение в покрытии активных раскислителей (титана, алюминия и кремния) обе­спечивает низкое содержание кислорода в металле шва (менее 0,05%). Поэ­тому наплавленный металл мало склонен к старению, стоек к образованию кристаллизационных трещин и имеет повышенные пластические свойства при низких температурах. Сварочно-технологические свойства электродов с основным видом покрытия ниже, чем у электродов с другим видом по­крытия. Образование большого количества отрицательных ионов фтора при плавлении покрытия приводит к уменьшению проводимости дугового раз­ряда и снижению устойчивости горения дуги. Поэтому сварку электродами с основным видом покрытия осуществляют на постоянном токе обратной по­лярности. Для сварки переменным током необходимо применение электродов с дополнительным содержанием ионизирующих элементов в покрытии, на­пример калия (в электродах марок СМ-11 и УП-1/55), или применение элек­тродов со специальным двухслойным покрытием (например, электроды мар­ки АНО-Д). Наличие влаги, масла, окалины или ржавчины на свариваемых кромках, наличие влаги в покрытии, а также увеличение длины дуги приво­дят к образованию пор в металле шва. Перед сваркой необходима прокалка электродов при температуре 350-400 °С в течение одного часа. Для получения качественных швов необходимо строго соблюдать требования по подготовке изделия и выдерживать технологический режим процесса сварки. Электро­ды с основным видом покрытия предназначены для сварки ответственных конструкций из углеродистых, низколегированных и легированных сталей. Электроды с основным видом покрытия иногда называют электродами с фтористокальциевым покрытием.

Электроды с целлюлозным видом покрытия (Ц) содержат много (до 50%) органических составляющих (целлюлозу, травяную муку и т. п.) для образо­вания большого количества газов. В качестве шлакообразующих применяют чаще всего рутил, карбонаты, алюмосиликаты и др. Иногда добавляют ас­бест — СаО3MgO 4SiO2. Для раскисления наплавленного металла добавляют ферромарганец. При сварке на торце электрода образуется конусная втулка из нерасплавившегося покрытия, что способствует образованию направлен­ного потока газов, который обеспечивает оттеснение жидкого металла из-под дуги и более глубокое проплавление основного металла. Эти электроды (марок ВСЦ-4А и др.) используют для сварки корневого слоя шва неповоротных сты­ков трубопроводов методом опирания сверху вниз с высокой скоростью, дости­гающей 25 м/ч. Они обеспечивают хорошую обратную сторону шва, поэтому отпадает необходимость в подварке шва изнутри. Для выполнения заполняю­щих и облицовочных швов при сварке ответственных конструкций из низко­легированных сталей во всех пространственных положениях предназначены, например, электроды марки ВСЦ-60.

К электродам со смешанным видом покрытия относят электроды с рутилово-основным (рутилкарбонатным или карбонатно-рутиловым) видом покры­тия (РБ), электроды с кисло-рутиловым видом покрытия (АР), с рутилово-целлюлозным видом покрытия (РЦ) и др. К электродам с кисло-целлюлозным видом покрытия относят электроды марки ОМА-2, предназначенные для свар­ки тонколистовых конструкций (толщиной 1-3 мм) из углеродистых и низко­легированных сталей постоянным и переменным током. К электродам с кисло­рутиловым (ильменитовым) видом покрытия относят электроды марок ОММ-5, АНО-6, АНО-6М, АНО-17 и др. Они содержат в покрытии ильменит (FeO TiO2) и предназначены для сварки конструкций из углеродистых сталей во всех пространственных положениях постоянным и переменным током. Электроды с рутилово-основным видом покрытия появились в результате попыток объе­динить преимущества рутиловых и основных покрытий. Они предназначены для сварки оборудования из углеродистых и низколегированных сталей с вре­менным сопротивлением до 490 МПа, когда к металлу сварных швов предъяв­ляются повышенные требования по пластичности и ударной вязкости. К элек­тродам с рутилово-основным видом покрытия относят электроды марок МР-3, АНО-30, ОЗС-28 и др.

Кроме указанных видов покрытий, имеются специальные электродные покрытия: гидрофобные, для сварки и наплавки цветных металлов и их сплавов и др. Гидрофобные покрытия предназначены для выполнения сва­рочных работ в особо влажных условиях: при повышенной влажности ат­мосферы, под водой и т. д. В них добавляют до 10% специальных гидро­фобных полимеров, которые в процессе полимеризации заполняют поры между частицами покрытия и перекрывают пути проникновения влаги во внутренние слои покрытия. Для сварки лежачим и наклонным используют специальные электроды, например, электроды марок НЭ-1, НЭ-5, ОЗС-17Н и др. В этом случае часто применяют удлиненные электроды (до двух ме­тров) и диаметром до 8 мм. Покрытие этих электродов обычно имеет повы­шенную толщину.

Конкретный состав покрытия и стержня в данном электроде определяет марка электрода. Обозначения марок часто содержат начальные буквы органи­зации, в которой были разработаны электроды, и порядковый номер.

Классификация и условные обозначения электродов.

Электроды, предназначенные для ручной дуговой сварки, в стандартах классифицируются по следующим признакам: металлу, для свар­ки которого они предназначены; толщине и типу покрытия; механическим свойствам металла шва и др. Согласно ГОСТ 9466-75 электроды для сварки и наплавки сталей в зависимости от назначения разделены на классы: для сварки углеродистых и низко­легированных конструкционных сталей с σв < 600 МПа — У (условное обозна­чение); для сварки легированных конструкционных сталей с σв > 600 МПа — Л; для сварки теплоустойчивых сталей — T; для сварки высоколегированных ста­лей с особыми свойствами — B; для наплавки поверхностных слоев с особыми свойствами — H. Этот стандарт регламентирует размеры электродов, толщину и типы покрытий, условные обозначения, общие технические требования, пра­вила приемки и методы испытания.