Напряжение — мера внутренних сил, возникающих в материале под влиянием внешних воздействий (нагрузок, изменения температуры и пр.). Для изучения напряжений через произвольную точку тела мысленно проводится сечение (рис. 1) и отбрасывается одна из половин тела. Действие отброшенной половины на другую половину заменяют внутренними силами.
В малом элементе сечения площадью dS в окрестности произвольной точки А действует произвольно направленная внутренняя сила dF. Отношение р = dF/dS называется вектором напряжения в точке А по площадке dS. Составляющие вектора напряжения, действующие по нормали к площадке, обозначаются σ и называются нормальными напряжениями, а действующие вдоль площадки называются касательными напряжениями τ в точке А по площадке dS, причём σ2+τ2=р2.
В общем случае напряженное состояние тела в точке А характеризуется совокупностью всех векторов напряжений для всевозможных сечений (площадок, проходящих через точку А), а значит и для любого направления. Напряженное состояние в точке А может быть определено с помощью тензора напряжений и характеризуется девятью компонентами по трем сям координат (три нормальных и шесть касательных). Касательные напряжения попарно равны (τxy = τyx, τxz = τzx, τyz = τzy,), т. е. остается всего шесть компонентов. Напряжения выражаются в Па (паскалях).
Для тензора характерным является закон, по которому преобразуется его компоненты при повороте осей координат. При повороте системы координат можно отыскать такое ее положение, когда касательные напряжения будут равны нулю. Эти направления называют главными.
Главные направления тензора напряжений определяются условием, зависящим от трех инвариантов I1, I2, I3.
Первым инвариантомI1 тензора напряжений является сумма нормальных напряжений:
I1= σx + σy + σz = Зσ0
Среднее значение трёх нормальных напряжений называют гидростатическим давлением:
σ0 = (σx + σy + σz)/3
Гидростатическому давлению соответствует тензор напряжений, нормальные компоненты которого равны σ0, а касательные — нулю. Поскольку гидростатическое давление не вызывает в металле пластических деформаций, его исключают из системы напряжений. Оставшуюся часть тензора называют девиатором напряжений Sσ:
Второй инвариантI2 тензора напряжений определяется следующим выражением:
I2=σxσy + σxσz + σy σz — τ2xy — τ2yz — τ2zx
Величины, пропорциональные корню квадратном из второго инварианта девиатора напряжений, называют интенсивностью касательных напряжений τi и интенсивностью нормальных напряженийσi:
Напряжения в материале могут возникнуть при физико-химических процессах, при неравномерном распределении температуры (при нагреве и охлаждении металла), а также вследствие фазовых превращений при термической обработке. При этом напряжения, возникающие в объеме всего тела, называют макронапряжениями (или напряжениями I рода), а напряжения, возникающие в объеме одного зерна, называют микронапряжениями (или напряжениями II рода). Напряжения, возникающие в объемах порядка нескольких параметров кристаллической решетки, называются субмикроскопическими (или напряжениями III рода). Деформациями называют изменения формы или размеров тела (или части тела) под действием внешних сил, а также при нагревании или охлаждении и других воздействиях, вызывающих изменение относительного положения частиц тела (рис. 2).
С геометрической точки зрения деформированное состояние в точке описывается тензором деформации:
Компоненты εx, εy, εz характеризуют линейные деформации волокон, расположенных по осям х, у, z: относительные удлинения (или относительные укорочения), а компоненты εxy, εxz, εyz— углы поворота двух взаимно перпендикулярных до деформации волокон (или деформации сдвига).
Для компонент деформаций сдвига справедливы равенства:
При повороте системы координат все компоненты тензора деформации преобразуются по определенным линейным относительно направляющих косинусов соотношениям. В теории деформации и линейных преобразований доказывается, что из всех возможных направлений осей координат существует тройка взаимно перпендикулярных направлений (главных направлений), относительно которых все сдвиговые компоненты деформации равны нулю. Главные направления деформаций определяются тремя скалярными величинами, не зависящими от положения системы координат и поэтому называемыми инвариантами.
Первый инвариант I1 = εx + εy + εz используется для записи условия постоянства объема деформируемого металла:
I1 = εx + εy + εz = 0
Второй инвариант тензора деформации имеет вид:
Величина, пропорциональная корню квадратному из второго инварианта называется интенсивностью деформаций и используется для характеристики деформаций в общем случае деформированного состояния.
Простейшие схемы деформирования — растяжение, сжатие, сдвиг, кручение, изгиб. Первые две схемы (растяжение и сжатие) могут быть описаны только линейными компонентами, вторые (сдвиг, кручение, изгиб) — только сдвиговыми (угловыми).
Способность металла сопротивляться воздействию внешних сил характеризуется механическими свойствами. Поэтому при выборе металла для изготовления деталей машин необходимо знать его механические свойства: прочность, упругость, пластичность, ударную вязкость и выносливость. Эти свойства определяют по результатам механических испытаний. при которых металлы подвергаются воздействию внешних сил (нагрузок). Внешние силы могут быть статическими, динамическими или циклическими (знакопеременными).
В зависимости от вида нагружения (растяжения, сжатия, изгиба, кручения. среза) и условий воздействия (температуры, скорости, периодичности и времени приложения) материалы принято характеризовать различными мерами сопротивления их деформации и разрушению — характеристиками механических свойств.
Механические свойства могут быть разделены на три основные группы.
Первая группа содержит комплекс характеристик, определяемых при однократном кратковременном нагружении. К ним относятся упругие свойства: модуль нормальной упругости Е, модуль сдвига и коэффициент Пуассона μ.
Сопротивление малым упруго-пластическим деформациям определяется пределами упругости — σупр, пропорциональности — σпц и текучести — σ0,2.
Предел прочности — σв, сопротивление срезу — и сдвигу — τсдв, твердость вдавливанием (по Бринеллю) НВ и царапанием (по шкале Мооса), а также разрывная длина Lp являются характеристиками материала в области больших деформации вплоть до разрушения.
Пластичность характеризуется относительным удлинением δ и относительном сужением ψ после разрыва, а способность к деформации ряда неметаллических материалов — удлинением при разрыве δр.
Кроме того, при ударном изгибе определяется ударная вязкость образца с надрезом KCU (KCV, КСТ).
Вторая группа включает параметры, оценивающие сопротивление материалов переменным и длительным статическим нагрузкам. При повторном нагружении в области многоцикловой усталости определяется предел выносливости на базе 107-2-107 циклов. Малоцикловая усталость определяется от многоцикловой условно выбранной базой испытания (N > 5-104 циклов) и отличается пониженной частотой нагружения (f = 0,1-5 Гц).
Сопротивление малоцикловой усталости оценивается по долговечности при заданном уровне повторных напряжений или пределом малоцикловой усталости на выдранной базе испытаний.
Сопротивление длительным статическим нагрузкам определяется, как правило, при температуре выше 20 °C.
Критериями сопротивления материалов длительному воздействию постоянных напряжений и температуры являются пределы ползучести σ0,2 и длительной прочности στ. Предел длительной прочности определяется при заданной базе испытаний (обычно 100 и 1000 часов), предел ползучести — по заданному допуску на остаточную (обычно 0.2%) или общую деформацию при установленной базе испытаний.
Третью группу составляют характеристики разрушения. В инженерной практике эти характеристики используются сравнительно недавно.
Характеристики разрушения определяются на образцах с заранее выращенными начальными трещинами и оцениваются следующими основными параметрами: вязкостью разрушения, критическим коэффициентом интенсивности напряжений при плоской деформации K1С, условным критическим коэффициентом интенсивности напряжений при плосконапряженном состоянии КС, удельной работой образца с трещиной КСТ и скоростью роста трещины усталости СРТУ при заданном размахе интенсивности напряжений ΔК.
Среди механических свойств только упругие свойства металлических материалов являются структурно нечувствительными характеристиками, связанными с параметрами кристаллической решетки и практически не зависящими от режимов термомеханической обработки, если последние не вызывают полиморфных превращений. Для практически изотропных поликристаллических металлических материалов упругие константы связаны соотношением Е = G (1 + μ). Упругие свойства определяют при статических испытаниях (Ест, Gст) или динамическим методом (Един, Gдин) по резонансной частоте колебаний тонкого стержня равномерного сечения под действием малых напряжений. Значения упругих констант, определенных обоими методами, при температуре 20 °C и близких к ней практически одинаковы. С повышением температуры при статических испытаниях сказывается влияние деформации ползучести, вследствие чего этот метод дает прогрессирующее понижение значений упругих констант относительно данных, полученных динамическим методом.
Все другие механические свойства в большей или меньшей степени структурно чувствительны и анизотропны. Резкая анизотропия упругих и других механических характеристик присуща многим неметаллическим материалам, что определяется их ориентированным строением. Некоторая анизотропия свойственна и большинству металлических материалов. Уровень прочности, пластичности, выносливости и характеристик разрушения в продольном направлении относительно оси деформации зерен материала обычно выше, чем в поперечном. Однако для некоторых, например титановых сплавов характерна «обратная» анизотропия. Наблюдается значительная разница в пределах текучести при растяжении и сжатии у большинства магниевых деформируемых сплавов (σ0,2 СЖ<< σ0,2).
Между некоторыми характеристиками механических свойств экспериментально установлены зависимости, позволяющие с достаточной степенью точности оценивать предел прочности материалов по значениям твердости, а сопротивление срезу — по пределу прочности. Существуют также корреляционные связи между пределом выносливости и пределом прочности, а также между различными характеристиками разрушения.
Энергетические и температурные условия процесса кристаллизации.
Любое вещество может находиться в трех агрегатных состояниях — газообразном, жидком и твердом. Изменение агрегатного состояния происходит при определенных температурах. Температура перехода зависит от давления, но при постоянном давлении они вполне определенны.
Переход металла из жидкого состояния в твердое с образованием кристаллической структуры называется первичной кристаллизацией. Плавление — процесс, обратный кристаллизации.
В природе все самопроизвольно протекающие превращения (кристаллизация и плавление) обусловлены тем, что новые состояния в новых условиях являются энергетически более устойчивыми, обладают меньшим запасом энергии.
Энергетическое состояние системы, имеющее огромное число охваченных тепловым движением частиц (атомов, молекул), характеризуется особой термодинамической функцией G, называемой свободной энергией. В условиях постоянного давления:
G = U – T ⸳ S
где — U — внутренняя энергия системы (вещества), т. е. полная энергия, равная сумме кинетической и потенциальной энергии частиц, составляющих данную систему: Т — абсолютная температура в системе, S — энтропия, т. е. мера внутренней неупорядоченности в системе.
Чем больше свободной энергии системы, тем система менее устойчива. С изменением внешних условий свободная энергия системы изменяется по сложному закону, но различно для жидкого и кристаллического состояний. Схематический характер изменения свободной энергии жидкого и твердого состояний в зависимости от температуры показан на рис. 1.
Из графика видно, что при температуре Ts свободные энергии жидкого и твердого состояний равны, металл находится в равновесии. Ts — равновесная или теоретическая температура кристаллизации, при которой Gж = Gтв.
Для начала кристаллизации необходимо уменьшение свободной энергии системы. Охлаждение жидкости ниже равновесной температуры кристаллизации называется переохлаждением. Разница между равновесной Ts и реальной Тк температурой кристаллизации называется степенью переохлаждения ΔТ. Степень переохлаждения зависит от природы металла, она увеличивается с повышением частоты металла и ростом скорости охлаждения. Процесс перехода металла из жидкого состояния в кристаллическое можно изобразить кривыми в координатах «Время — Температура» (рис. 2).
Охлаждение металла в жидком состоянии сопровождается плавным понижением температуры. При достижении температуры кристаллизации на кривой «температура-время» появляется горизонтальная площадка, так как отвод тепла компенсируется выделяющейся при кристаллизации скрытой теплотой кристаллизации. Жидкий металл обладает большей внутренней энергией, чем твердый, поэтому при кристаллизации выделяется теплота. По окончании кристаллизации температура снова начинает снижаться и твердое кристаллическое вещество охлаждается.
Механизм и основные закономерности процесса кристаллизации.
В жидком состоянии атомы вещества вследствие теплового движения перемещаются беспорядочно. В то же время в жидкости имеются группировки атомов небольшого объема, в пределах которых расположение атомов вещества во многом аналогично их расположению в решетке кристалла. Эти группировки неустойчивы, они рассасываются и вновь появляются в жидкости. При переохлаждении жидкости некоторые из них (наиболее крупные) становятся устойчивыми и способными к росту. Эти устойчивые группировки атомов называют центрами кристаллизации (зародышами).
Образование зародышей способствует флуктуации энергии, т. е. отклонение энергии группировок атомов в отдельных зонах жидкого металла от некоторого среднего значения. Размер образовавшегося зародыша зависит от величины зоны флуктуации.
Процесс образования кристаллов путем зарождения центров кристаллизации и их роста можно рассмотреть с помощью схем (рис. 3).
Рассмотрение подобных схем кристаллизации позволяет объяснить два важных момента:
по мере развития процесса кристаллизации в нем участвует все большее и большее число кристаллов, поэтому процесс вначале ускоряется до тех пор, пока в какой-то момент взаимное столкновение растущих кристаллов не начинает заметно препятствовать их росту, которое замедляется; тем более, что и жидкости, в которой образуются новые кристаллы, становится все меньше;
в процессе кристаллизации кристалл, окруженный жидкостью, имеет правильную форму, но по мере столкновения и срастания кристаллов их правильная форма нарушается и оказывается в зависимости от условий соприкосновения растущих кристаллов. Кристаллы неправильной формы называются кристаллитами или зернами.
Скорость процесса и окончательный размер кристаллов при затвердевании определяется соотношением между скоростью образования центров кристаллизации и скоростью роста кристаллов (рис. 4).
При небольших степенях переохлаждения, когда зародыш критического размера велик, а скорость образования зародышей мала, в результате затвердевания образуется крупнокристаллическая структура. Чем больше степень переохлаждения, тем больше центров кристаллизации и тем меньше размер зерна. Чем мельче зерно, тем выше механические свойства сплава.
Небольшие степени переохлаждения достигаются при заливке жидкого металла в форму с низкой теплопроводностью (земляная, шамотовая) или в подогретую металлическую форму. Увеличение переохлаждения происходит при заливке жидкого металла в холодные металлические формы, а также при уменьшении толщины стенок отливок. Поскольку при этом скорость образования зародышей увеличивается более интенсивно, чем скорость их роста, получается более мелкий кристалл.
В реальных условиях процессы кристаллизации и характер образующейся структуры в значительной мере зависят от имеющихся центров кристаллизации. Такими центрами являются частицы тугоплавких неметаллических включений, оксидов, интерметаллических соединений, образуемых примесями. При кристаллизации атомы металла откладываются на активированные поверхности примеси как на готовом зародыше.
Наличие готовых центров кристаллизации приводит к уменьшению размеров кристалла при затвердевании. Рост зерна чаще всего происходит по дендритной схеме (рис. 5). Это связано с тем, что развитие зародышей протекает главным образом в тех направлениях решетки, которые имеют наибольшую плотность упаковки атомов и минимальное расстояние между ними. В этих направлениях образуются ветви — оси первого порядка I. От осей первого порядка начинают расти оси второго порядка II, от них — оси третьего порядка III и т. д.
Условия отвода теплоты при кристаллизации значительно влияют на форму зерен. Кристаллы растут преимущественно в направлении, обратном отводу теплоты. Поэтому при направленном теплоотводе образуются вытянутые (столбчатые) кристаллы. Если теплота от растущего кристалла отводится во всех трех направлениях с приблизительно одинаковой скоростью, формируются равноосные кристаллы.
Структура слитка зависит от многих факторов, основные из которых следующие:
количество и свойство примесей в чистом металле или легирующих элементов в сплаве;
температура разливки;
скорость охлаждения при кристаллизации, а также конфигурация;
температура;
теплопроводность;
состояние внутренней поверхности литейной формы.
Типичная структура литого слитка состоит из трех основных зон (рис. 6).
1 зона — наружная мелкозернистая корка, состоящая из мелких различно ориентированных кристаллов. Для этой зоны характерна большая степень переохлаждения, что ведет к образованию большого количества центров кристаллизации. Отсутствие направленного роста кристаллов этой зоны объясняется их случайной ориентацией, которая является причиной столкновения кристаллов и прекращения их роста. Эта зона очень тонка и не всегда различима невооруженным глазом.
2 зона — зона столбчатых кристаллов. После образования корки уменьшается степень переохлаждения и кристаллы растут в направлении отвода тепла.
3 зона — зона равноосных кристаллов. В центре слитка нет определенной направленности отвода тепла, наблюдается наименьшая степень переохлаждения, кристалл может расти практически с одинаковой скоростью по всем направлениям.
Применяя различные технологические приемы, можно изменить количественные соотношения зон или исключить из структуры слитка какую либо зону вообще. В верхней части слитка, которая затвердевает в последнюю очередь, концентрируется усадочная раковина. Под усадочной раковиной металл получается рыхлым, в нем содержится много усадочных форм. Часть слитка с усадочной раковиной и рыхлым металлом отрезают.
Превращения в твердом состоянии. Полиморфизм.
Образование новых кристаллов в твердом кристаллическом веществе называется вторичной кристаллизацией. Многие металлы в зависимости от температуры могут существовать в разных кристаллических формах или разных модификациях. Существование одного металла в нескольких кристаллических формах носит название полиморфизма.
В результате полиморфного превращения атомы кристаллического тела, имеющие решетку одного типа, перестраиваются таким образом, что образуется кристаллическая решетка другого типа. Полиморфную модификацию, устойчивую при более низкой температуре, для большинства металлов принято обозначать буквой α, а при более высокой — β, γ и т. д.
Металл
Кристаллическая структура
Температура существования модификации, °C
Титан
ГП ОЦК
До 882 882-1668
Цирконий
ГП ОЦК
До 862 862-1852
Олово
Алмазная ТОЦ
До 13 13-232
Уран
Ромбическая ТОЦ ОЦК
До 663 663-764 764-1130
Кобальт
ГП ГЦК
До 447 477-1490
Таблица 1. Кристаллическая структура полиморфных металлов.
При переходе металла из одной полиморфной модификации в другую происходит фазовая перекристаллизация, вследствие образования новых зерен в структуре металла. Можно считать, что процесс перекристаллизации при полиморфном превращении подчиняется тем же законам, что и процесс перекристаллизации. Полиморфное превращение прежде всего развивается в тех участках структуры, в которых уровень свободной энергии повышен. Такими участками являются границы зерен и приграничные области. Чем меньше размер зерна, тем больше межзеренная поверхность и тем больше возникает зародышевых центров. Температура, при которой осуществляется переход из одной модификации в другую, носит название температуры полиморфного превращения.
Переход металла из одной полиморфной модификации в другую в условиях равновесия протекает при постоянной температуре и сопровождается выделением тепла, если превращение идет при охлаждении, и поглощением тепла — при нагреве. На кривых охлаждения и нагрева переход из одного состояния в другой характеризуется остановкой (для чистых металлов) или изменением характера кривой (для сплавов).
Рассмотрим явление полиморфизма на примере железа (рис. 7). Железо имеет две температуры полиморфного превращения — 1392 °C и 911 °C:
при t < 1392 °C; Feδ(α) ->Feγ; ОЦК -> ГЦК,
при t < 911 °C; Feγ ->Feα; ГЦК -> ОЦК.
При температуре 768 °C получается остановка на кривой охлаждения, связанная не с перестройкой решетки, а с изменением магнитных свойств. Железо отличается специфическими магнитными свойствами. Эти свойства называются ферромагнитными. При нагреве ферромагнитные свойства постепенно теряются. П. Кюри показал, что полная потеря ферромагнитных свойств получается при определенной температуре, названной впоследствии точкой Кюри. Выше 768 °C Feα немагнитно (немагнитное Feα иногда называют Feβ), ниже 768 °C железо ферромагнитно.
Магнитное превращение имеет ряд особенностей, отличающих его от полиморфического превращению. Магнитные свойства железа постепенно падают по мере приближения к точке превращения, и эта точка не отвечает скачкообразному изменению свойств:
магнитное превращение не имеет температурного гистерезиса, увеличение скорости охлаждения не снижает температуры превращения;
механические и некоторые физические свойства при превращении не изменяются, изменяются многие электрические, магнитные и тепловые свойства;
магнитное превращение не сопровождается перекристаллизацией.
При магнитных превращениях происходит изменение не в кристаллической структуре металла, а во взаимодействии внешних и внутренних электронных оболочек атомов.
Полиморфное превращение сопровождается скачкообразным изменением свойств металлов или сплавов — удельного объема, теплоемкости, теплопроводности, электропроводности и т. д. Эти превращения происходят не только в чистых металлах, но и в сплавах.
Металлы, их классификация и основные физические свойства.
Что такое металл? М. В. Ломоносов в своем труде «Первые основания металлургии или рудных дел» дал металлам такое определение: «Металлы суть ковкие блестящие тела». Позже, объясняя понятие «металлы», стали называть и другие металлические свойства. В энциклопедическом словаре Мейера о металлах говорится следующее: «Элементы, которые являются хорошими проводниками тепла и электричества, обладают характерным сильным блеском, непрозрачны (в не слишком тонком слое) и образуют с кислородом соединения преимущественно основного типа».
Металлы в твердом состоянии обладают рядом характерных свойств:
высокой тепло- и электропроводностью;
положительным температурным коэффициентом электросопротивления (с повышением температуры электросопротивление чистых металлов возрастает; большое число металлов обладает сверхпроводимостью — у этих металлов при температуре, близкой к абсолютному нулю, электросопротивление падает скачкообразно практически до нуля);
термоэлектронной эмиссией, т. е. способностью испускать электроны при нагреве;
хорошей отражательной способностью (металлы непрозрачны и обладают металлическим блеском);
повышенной способностью к пластической деформации.
Эти свойства металлов обусловлены их электронным строением. Металлическое состояние возникает в комплексе атомов, если при их сближении внешние электроны теряют связь с отдельными атомами, становятся общими, т. е. коллективизируются и свободно перемещаются по определенным энергетическим уровням между положительно заряженными и периодически расположенными в пространстве ионами. Устойчивость металла, представляющего собой ионно-электронную систему, определяется электрическим взаимодействием между положительно заряженными ионами и коллективизированными электронами. Такое взаимодействие между ионным скелетом и электронным газом получило название металлической связи.
Сила связи в металлах определяется соотношением между силами отталкивания и силами притяжения между ионами и электронами. Атомы (ионы) располагаются на таком расстояния один от другого, чтобы энергия взаимодействия быта минимальной. Этому положению соответствует равновесное расстояние d0 (рис. 1).
Сближение атомов (ионов) на расстояние меньшее do или удаление на расстояние больше do. осуществимо лишь при совершении определенной работы против сил отталкивания или притяжения.
Каждый металл отличается от других строением и свойством, но по некоторым признакам их можно объединить в группы (рис. 2).
Металлы делятся на две большие группы — черные и цветные. Черные металлы делятся на:
железные — железо, кобальт, никель, марганец. Кобальт, никель и марганец часто применяют как добавки к сплавам железа, а также в качестве основы для соответствующих сплавов, похожих по своим свойствам;
тугоплавкие — титан, вольфрам, хром, молибден и др. — температура плавления выше, чем железа (выше 1539 °C). Применяют как добавки к легированным сталям, а также в качестве основы для соответствующих сплавов;
урановые — актиний и актиноиды, имеющие преимущественное применение в сплавах для атомной энергетики;
редкоземельные — лантан, церий, неодим и др., объединяемые под названием лантаноиды. Эти металлы обладают близкими химическими свойствами, но различными физическими (температура плавления и т. д.). Их применяют как присадки к сплавам др. элементов;
щелочноземельные — литий, натрий, кальций и др., которые в свободном металлическом состоянии не применяются.
Цветные металлы подразделяются на:
легкие — бериллий, магний, алюминий, обладающие малой плотностью;
благородные — серебро, золото, металлы платиновой группы. Обладают высокой устойчивостью против коррозии;
легкоплавкие металлы — цинк, олово, свинец и др.
Различные агрегатные состояния и кристаллическое строение металлов.
Все вещества в зависимости от температуры и давления могут находиться в трех агрегатных состояниях: твердом, жидком и газообразном.
В чистых металлах при повышении температуры происходит изменение агрегатного состояния: при превышении температуры плавления твердое состояние сменяется жидким, при превышении температуры кипения жидкое состояние переходит в газообразное. Эти температуры перехода зависят от давления.
Температура плавления — особенно важная константа свойств металла — колеблется для различных металлов в весьма широких пределах: от минус 38,9 °C для ртути, самого легкоплавкого металла, находящегося при комнатной температуре в жидком состоянии, до 3390 °C — для самого тугоплавкого металла — вольфрама.
При постоянном давлении температуры плавления, плотность и некоторые теплофизические характеристики вполне определенны и для наиболее распространенных в технике металлов приведены в таблице 1.
В газообразном состоянии частицы вещества не связаны между собой молекулярными силами притяжения и хаотически движутся, заполняя весь возможный объем. При обычных давлениях и температурах среднее расстояние между молекулами в газах примерно в десять раз больше, чем в твердых телах и жидкостях. Поэтому газы имеют значительно меньшие плотности, чем твердые тела и жидкости. При обычных температурах газы — хорошие диэлектрики, так как их атомы и молекулы электрически нейтральны.
При нагреве газа до высоких температур происходит его ионизация: концентрация заряженных частиц увеличивается, причем объемные плотности положительных и отрицательных электрических зарядов заряженных частиц становятся практически одинаковыми. Термически ионизированный газ отличается от обычного газа рядом особенностей, позволяющих считать его четвертым (после твердого, жидкого и газообразного) состоянием вещества — плазмой. В технике широкое применение получила «холодная» или низкотемпературная плазма (~103-104К).
Жидкости представляют собой вещества в конденсированном агрегатном состоянии, промежуточном между’ твердым и газообразном. Жидкости подобно твердым телам обладают малой сжимаемостью и большой плотностью, но в то же время подобно газам не обладают упругостью формы и легко текут.
В жидкостях среднее расстояние между молекулами сравнимо с размерами самих молекул (~10 Нм = 10-10 м), поэтому силы межмолекулярного взаимодействия весьма значительны. Подобно частицам твердого тела молекулы жидкости совершают тепловые колебания около некоторых положений равновесия. Однако если в твердых телах эти положения равновесия неизменны (т. е. имеет место дальний порядок), то в жидкостях они время от времени изменяются: по истечении некоторого времени молекула жидкости перескакивает в новое положение равновесия, перемещаясь на расстояние, сравнимое с расстоянием между молекулами.
Эти перемещения молекул жидкости обусловливают ее текучесть. Таким образом, несмотря на то, что в жидкостях не соблюдается дальний порядок, как у твердых тел, для них имеет место «ближний порядок»: в среднем для каждой молекулы жидкости число ближайших соседей и их взаимное расположение одинаковы.
В твердом состоянии физические тела характеризуются стабильностью формы. При изменении формы в твердых телах возникают упругие силы, препятствующие этому изменению. В твердых телах элементарные частицы (атомы, молекулы или ионы) совершают малые тепловые колебания около некоторых фиксированных положений равновесия, т. е. имеет место «дальний порядок», вследствие которого элементарные частицы твердого тела могут: располагаться по узлам кристаллических решеток.
Правильное регулярное расположение атомов в твердом теле, характеризующееся периодической повторяемостью в трех измерениях, образует кристаллическую решетку, а тела, имеющие кристаллическую решетку, называют твердыми телами. Металлы являются телами кристаллическими.
Наиболее простой кристаллической решеткой у металлов является кубическая, имеющая две разновидности: кубическую объемноцентрированную (ОЦК)и кубическую гранецентрированную (ГЦК).
У обоих типов этих решеток основу ячеек составляют восемь атомов, образующих куб и находящихся в его вершинах. Остальные атомы находятся или в центре объема куба (1 атом на пересечении диагоналей в решетке ОЦК), или в центре каждой из его граней (6 атомов в решетке ГЦК). Кристаллические решетки ОЦК имеют альфа-железо (Feα), хром, ванадий, вольфрам и другие металлы. Решетку ГЦК имеют гамма-железо (Feγ), алюминий, медь, никель и другие металлы.
Другой разновидностью кристаллических решеток у металлов является гексагональная плотноупакованная решетка (ГПУ). Ячейка этой решетки представляет собой шестигранную призму с центрированными основаниями, между которыми на некотором расстоянии от центров трех граней расположены еще три атома. ГПУ решетку имеют магний, цинк, бериллий и другие металлы (рис. 3).
Плоскости, параллельные координатным плоскостям и находящиеся на расстоянии а, в, с, разбивают кристалл на множество параллелепипедов, равных и параллельно ориентированных. Наименьший параллелепипед называют элементарной ячейкой. Вершины параллелепипеда называют узлами пространственного решетки. Размер элементарной ячейки оценивают отрезками а, b, c. Их называют периодами решетки. Дополнительными характеристиками кристаллической решетки являются координационное число и коэффициент компактности.
Координационное число К — число ближайших равноудаленных частиц (атомов) от любого атома в кристаллической решетке (для ОЦК — К8, для ГЦК — К12). Коэффициент компактности — отношение объема всех частиц, приходящихся на одну элементарную ячейку, ко всему объему элементарной ячейки (для ОЦК — 0,68, для ГЦК — 0,74).
Упорядоченность расположения атомов в кристаллической решетке позволяет четко выделить кристаллографические направления и плоскости (рис. 4). Кристаллографические направления — лучи, выходящие из какой-нибудь точки отсчета, вдоль которых на определенном расстоянии друг от друга располагаются атомы.
Точками отсчета могут служить вершины куба, при этом кристаллографическими направлениями являются его ребра и диагонали грани.
Кристаллографические плоскости — плоскости, на которых лежат атомы, например, грани куба или его диагональной плоскости. Кристаллографические направления и плоскости принято обозначать индексами Миллера. Для определения индекса какого-либо направления следует найти координаты ближайшего к точке отсчета атома, лежащего на этом направлении, выраженные через параметр решетки.
Пример. Координаты ближайшего атома вдоль оси ох выразятся через 100. Этими цифрами принято обозначать индекс направления вдоль оси ох и параллельных ему направлениях [100]. Индексы направлений вдоль оси оу и oz и параллельных им направлений выразятся соответственно через [010] и [001], а направления вдоль диагонали грани xoz, хоу, yoz и диагонали куба получат индексы соответственно [101], [110], [011], [111].
Для определения индекса кристаллографической плоскости следует вначале найти координаты ближайших точек ее пересечения с осями координат, проведенными из точки отсчета 0. Затем обратные величины найденных координат следует записать в обычной последовательности в круглых скобках. Использование понятий о кристаллографических направлениях и плоскостях и об их индексах позволяет описывать различные явления, происходящие в кристаллических телах, а также особенности свойств кристаллических тел вдоль различных направлений и плоскостей.
Физические и прочностные свойства металлов вдоль различных кристаллографических направлений зависят от числа атомов, расположенных на этих направлениях. В действительности в кристаллической решетке на различных направлениях находится разное число атомов. Например, в кубических решетках (рис. 4) вдоль диагонали куба ОЦК решетки [111] или диагонали грани решетки ГЦК [110], [101], [011] размещается больше атомов, чем по направлениям вдоль ребер кубов [100], [010], [001].
Из этого следует, что в кристаллических веществах должна наблюдаться анизотропия, т. е. неодинаковость свойств вдоль различных кристаллографических направлениях.
Анизотропия — это зависимость свойств кристалла от направления, возникающая в результате упорядоченного расположения атомов в пространстве. Анизотропия механических и других свойств наблюдается при испытании образцов, вырезанных вдоль различных кристаллографических направлений. Не всем свойствам кристаллических тел присуще явление анизотропии, так, например, теплоемкость, от направления не зависит.
Анизотропия проявляется только в пределах одного кристаллического зерна. Реальные металлы являются телами поликристаллическими, состоящими из огромного числа зерен, произвольно ориентированных друг к другу своими кристаллографическими направлениями и плоскостями.
В связи с этим, недостаток какого-либо свойства по одному из направлений приложения силы в одних зернах компенсируется избытком этого свойства по этому же направлению в других зернах. Поэтому реальные металлы являются изотропными телами, т. е. телами с примерно одинаковыми свойствами по всем направлениям.
Реальное строение металлов и дефекты кристаллических решеток.
Строение реальных кристаллов отличается от идеальных. В реальных кристаллах всегда содержатся дефекты, которые подразделяются на точечные, линейные, поверхностные и объемные.
К самым простым точечным дефектам относятся вакансии, межузельные атомы основного вещества, чужеродные атомы внедрения (рис. 5).
Вакансией называется пустой узел кристаллической решетки, т. е. место, где по той или иной причине отсутствуют атомы (рис. 5, а). Межузельный атом — атом, перемещенный из узла в позицию между узлами (рис. 5, б). Вакансии и межузельные атомы появляются в кристаллах из-за тепловых колебаний атомов при любой температуре выше абсолютного нуля. Каждой температуре соответствует равновесная концентрация вакансий, а также межузельных атомов.
Вакансии являются самой важной разновидностью точечных дефектов, они ускоряют все процессы, связанные с перемещениями атомов (диффузия, спекание порошков и т. д. ).
Атомы внедрения — это атомы примесного элемента, находящиеся в междоузлиях кристаллической решетки (рис. 5, в).
Все виды точечных дефектов искажают кристаллическую решетку и в определенной мере влияют на физические свойства металла (электропроводность, магнитные свойства и др.), а также на фазовые превращения в металлах и сплавах.
Линейные несовершенства имеют малые размеры в двух измерениях и большую протяженность в третьем измерении. Важнейшие виды линейных несовершенств — краевые и винтовые дислокации. Образуются дислокации в результате локальных или местных смещений кристаллографических плоскостей, происходящих в кристаллической решетке зерен на различных технологических этапах их формирования. Наиболее распространенной является краевая дислокация (рис. 6). Она представляет собой локализованное искажение кристаллической решетки, вызванное наличием атомной полуплоскости или экстраплоскости АВ.
Линию атомов нижней границы экстраплоскости принято называть дислокацией. Дислокацию обозначают знаком ┬ или ┴ (экстраплоскости в верхней или нижней части зерна — положительная или отрицательная). Различие между положительной или отрицательной дислокациями чисто условное. Вокруг дислокаций решетка упруго искажена. Мерой искажения служит так называемый вектор Бюргерса. Он получается, если обойти замкнутый контур в идеальном кристалле (рис. 7), переходя от узла к узлу, а затем этот же пуль повторить в реальном кристалле, заключив дислокацию внутрь контура. Отрезок АЕ, по модулю равный параметру решетки, принято считать вектором Бюргерса. Он перпендикулярен линии дислокации.
Дислокации возникают при кристаллизации, плотность их большая, поэтому они значительно влияют на свойства материалов, наряду с другими дефектами участвуют в фазовых превращениях. Дислокации служат местом концентрации примесных атомов. Примесные атомы образуют вокруг дислокации зону повышенной концентрации — так называемую атмосферу Коттрела, которая мешает движению дислокаций и упрочняет металл.
Поверхностные дефекты.
Наиболее важными являются большеугловые и малоугловые границы, дефекты упаковки, границы двойников.
Поликристаллический сплав содержит огромное число мелких зерен. В соседних зернах решетки ориентированы различно (рис. 8) и граница между зернами представляет собой переходный слой шириной 1-5 нм. В нем нарушена правильность расположения атомов, имеются скопления дислокаций, повышена концентрация примесей. Границы между зернами называются большеугловыми, т.к. соответственные кристаллографические направления в соседних зернах образуют узлы в десятки градусов (рис. 8, а).
Каждое зерно, в свою очередь, состоит из субзерен. Субзерно представляет собой часть кристалла относительно правильного строения, а его границы — стенки дислокаций, которые разделяют зерно на отдельные субзерна (рис. 8, б). Угол взаимной разориентации между соседними субзернами невелик (не более 5 %), поэтому такие границы называются малоугловыми.
Дефект упаковки представляет собой часть атомной плоскости, ограниченную дислокациями, в пределах которой нарушен нормальный порядок чередования атомных слоев.
Двойники. Двойникованием называют симметричную переориентацию областей кристаллической решетки. Решетка внутри двойниковой прослойки является зеркальным отображением решетки в остальной части кристалла.
Поверхностные дефекты влияют на механические и физические свойства материалов. Особенно большое значение имеют границы зерен. Предел текучести от связан с размером зерен зависимостью: σт = σ0 + кd-1/2, где σ0 и к — постоянные для данного материала. Чем мельче зерно, тем выше предел текучести, вязкость и меньше опасность хрупкого разрушения.
Объемные дефекты (пустоты, поры, трещины и включения) имеют значительные размеры во всех трех направлениях.
Строение сплавов.
Сплавы — важные вещества, получаемые сплавлением или спеканием двух или нескольких элементов периодической системы, называемых компонентами. Сплав считается металлическим, если его основу (свыше 50 % по массе) составляют металлические компоненты. Металлические сплавы обладают более высокими прочностными и другими механическими свойствами по сравнению с чистыми металлами.
В зависимости от природы сплавляемых компонентов сплавы, взаимодействуя друг с другом, могут образовать различные по строению и свойствам продукты. Характер взаимодействия компонентов при сплавлении зависит от их положения в таблице Д. И. Менделеева, особенностей строения электронных оболочек их атомов, типов и параметров их кристаллических решеток, соотношения температур их плавления, атомных диаметров и других факторов.
Компоненты при сплавлении могут образовывать смеси зерен с пренебрежимо ничтожной взаимной растворимостью, неограниченно или частично растворяться друг в друге, а также образовывать химические соединения.
Смесь образуется при взаимодействии компонентов, не способных к взаимному растворению в твердом состоянии и не вступающих в химическую реакцию с образованием соединения (рис. 9). В этих условиях сплав состоит из чистых зерен обоих компонентов, сохраняющих присущие им типы кристаллических решеток и прочностные свойства. Механические свойства таких сплавов зависят от количественного соотношения компонентов, от размеров и формы зерен и соединения их границ.
Химическое соединение представляет собой зерна со специфической кристаллической решеткой, отличной от решеток обоих компонентов. При образовании химического соединения соотношение чисел атомов элементов соответствует стехиометрической пропорции, что выражается формулой АnВт — связь между атомами в них сильнее и жестче металлической. Поэтому они являются очень твердыми и хрупкими веществами.
Химическое соединение характеризуется определенной температурой плавления, скачкообразным изменением свойств при изменении состава. Если химическое соединение образуется только металлическими элементами, то в узлах решеток располагаются положительно заряженные ионы, удерживаемые электронным газом — возникает металлическая связь.
При образовании химического соединения металла с неметаллом возникает ионная связь. В результате взаимодействия элементов в этом случае атом металла отдает электроны (валентные) и становится положительным ионом, а атом металлоида принимает электроны на свою внешнюю оболочку и становится отрицательным ионом. В решетке химического соединения такого типа элементы удерживаются электростатическим притяжением.
Если образующиеся в сплавах химические соединения оказываются стойкими веществами, не диссоциирующими при нагреве вплоть до температуры плавления, то их принято рассматривать в качестве самостоятельных компонентов, способных образовывать сплавы с компонентами сплава.
Твердый раствор образуется при растворении компонентов друг в друге, является однофазным, состоит из одного вида кристаллов, имеет одну кристаллическую решетку и существует в интервале концентраций. Обозначаются твердые растворы буквами латинского алфавита: α, β, γ и т. д.
При образовании твердого раствора сохраняется решетка одного из компонентов. В этом случае компонент называется растворителем.
Атомы растворенного вещества искажают и изменяют средние размеры элементарной ячейки растворителя. Если атомы растворенного компонента В замещают в узлах решетки атомы компонента-растворителя А, то образующийся раствор называется твердым раствором замещения. Твердые растворы замещения могут: быть ограниченные и неограниченные. Неограниченные твердые растворы образуются, если компоненты имеют одинаковую кристаллическую решетку и одинаковый атомный радиус. Ограниченные твердые растворы образуются, если компоненты имеют одинаковую кристаллическую решетку, а атомные радиусы разнятся.
При образовании твердых растворов внедрения атомы растворенного вещества С располагаются между атомами А в кристаллической решетке растворителя. Следовательно, диаметр атома С должен быть невелик, а внутри решетки металла А должно быть достаточное пространство для атома С (рис. 10). Искажения решетки при образовании твердых растворов внедрения больше, чем при образовании твердых растворов замещения, поэтому у них более резко изменяются свойства.
Образование твердых растворов сопровождается увеличением твердости и прочности, уменьшением температурного коэффициента электрического сопротивления, пластичности (исключение составляют твердые растворы на основе меди) по сравнению с чистыми металлами.
В сплавах, содержащих более двух элементов, возможно растворение в одном и том же растворителе и путем замещения, и путем внедрения. Например, при сплавлении железа с марганцем и углеродом получается твердый раствор, в котором марганец растворяется путем замещения, а углерод — путем внедрения.
Лазерная сварка в промышленности осуществляется с помощью лазерных технологических установок. В их состав входят, как правило, технологический лазер, системы транспортирования и фокусировки излучения и защиты зоны шва, а также механизмы крепления и перемещения свариваемого объекта.
Для сварки применяют два типа технологических лазеров: газовые и твердотельные.
Газовые лазеры.
В них активной средой являются чистый газ, смесь нескольких газов или газа с парами металла, возбуждаемая электрическим разрядом, химическими реакциями или при адиабатическом сверхзвуковом истечении нагретого газа через сопло. В соответствии с этим различают газовые электроразрядные, химические и газодинамические лазеры.
Наибольшее распространение получили электроразрядные СО2-лазеры, в которых используются нижние колебательные уровни возбужденных молекул СО2 для инфракрасного излучения с длиной волны 10,6 мкм. Газ возбуждают электрическим разрядом. Электрический КПД СО2-лазера составляет 5…15%.
Для повышения эффективности генерации излучения молекул углекислого газа в большинстве СО2-лазеров используется газовая смесь с различным процентным содержанием СО2 , N2 и He. Добавка N2 в рабочую газовую смесь способствует усилению генерации излучения, а He интенсифицирует отвод теплоты во время генерации вследствие высокой теплоемкости и теплопроводности, понижая температуру рабочей смеси.
Для увеличения эффективности использования газовой смеси необходимо не допускать ее перегрева. С этой целью рабочую смесь охлаждают либо за счет отвода теплоты от разрядной трубки (СО2-лазеры с диффузионным охлаждением рабочей смеси — медленная прокачка), либо при циркуляции рабочей смеси и замене нагретых объемов (СО2-лазеры с конвективным охлаждением — быстрая прокачка).
Медленная прокачка применяется в трубчатых однолучевых лазерах со сравнительно малой мощностью и в многолучевых лазерах. Однако излучение лазеров с диффузионным охлаждением отличается повышенной расходимостью из-за наличия большого числа поворотных зеркал и многомодового характера излучения. Поэтому при фокусировке излучения максимальные значения плотности мощности ограничены (104…5 х 105 Вт/см2).
В лазерах с быстрой прокачкой достигаются более высокие мощности излучения (> 1 кВт). По направлению газового потока относительно электродов газоразрядной камеры и зеркал резонатора различают лазеры с продольной прокачкой и лазеры с поперечной прокачкой. Возбуждение рабочей газовой смеси осуществляется разрядом постоянного тока, высокочастотным разрядом или разрядом постоянного тока с импульсной предионизацией.
На рисунке 1, а — б представлена схема с быстрой продольной прокачкой. Быстрая продольная прокачка смеси осуществляется с высокой скоростью (v = 120 м/с) через четыре пары параллельных газоразрядных трубок; при последовательном сложении лучей общая оптическая длина активной среды L = 1,6 м. В блоке питания лазера используется трехфазный высоковольтный регулятор переменного напряжения. Модулятор питания позволяет перейти на импульсный режим. Газовакуумная система имеет ручное и автоматическое управление, осуществляющее откачку и напуск смеси за 2 мин. При этом обеспечивается поддержание давления в газовакуумном контуре.
Используемые в технологических лазерах оптические резонаторы обеспечивают качество излучения с расходимостью 1…5 мрад. Зеркала для резонаторов изготавливают из меди, кремния и других материалов с покрытиями, гарантирующими высокий коэффициент отражения 98…99,7% для длины волны генерируемого излучения 10,6 мкм.
Одним из недостатков СО2-лазера является то, что в оптических фокусирующих системах требуются линзы из таких дефицитных материалов, как арсенид галлия, германий, селенид цинка и др.
Твердотельные лазеры.
В твердотельных лазерах генерация излучения осуществляется в твердом активном элементе, в качестве которого используют стержни из кристалла искусственного рубина, стекла с присадкой редкоземельного элемента неодима, алюмоиттриевого граната с добавкой неодима.
Принципиальная схема твердотельного лазера представлена на рисунке 2. Твердый активный элемент 2 размещают в резонаторе между двумя зеркалами 1 и 3. Зеркало 1 полностью отражает все падающее на него излучение, а зеркало 3 является полупрозрачным. Оптическая накачка активной среды осуществляется энергией газоразрядной лампы-вспышки 4 с источником питания 6. Для получения более эффективного облучения лампу 4 вместе с активным элементом 2 помещают в кожух 5 , на внутреннюю поверхность которого нанесено отражающее покрытие типа серебра, золота и др. Кожух 5 имеет эллиптическую форму, а лампа и кристалл размещаются в фокусах эллипса. Этим достигаются условия равномерного и интенсивного освещения кристалла.
Твердотельные лазеры с рубиновым стержнем обычно работают в импульсно-периодическом режиме излучения с длительностью импульсов 10-3…10-9 с на длине волны 0,69 мкм. Энергия излучения в импульсе 10-2…10-3 Дж при максимальной частоте повторения импульсов > 10 Гц.
Твердотельные лазеры на стекле с неодимом и на гранате с неодимом генерируют излучение на длине волны 1,06 мкм и характеризуются высокой мощностью излучения в импульсе при импульсно-периодическом режиме генерации. Частотный режим твердотельных неодимовых лазеров изменяется в широких пределах: 0,05 Гц…50 кГц. При низких частотах (0,1…1 Гц) эти лазеры способны генерировать энергию в десятки джоулей в импульсе при длительности импульса порядка 100 мкс.
Отличительной особенностью этих лазеров является возможность генерации излучения не только в импульсно-периодическом, но и в непрерывном режиме. Мощность непрерывной генерации достигает 0,5…2,0 кВт и выше. Электрооптический КПД твердотельных лазеров с использованием ламповой накачки активных элементов — 1…3%.
Твердотельные лазеры с диодной накачкой (диодные лазеры) обеспечивают весьма высокие значения электрооптического КПД порядка 30…60%, малые габаритные размеры и небольшую длину волны излучения (порядка 0,8…0,9 мкм).
Более короткая длина волны излучения (1,06 мкм) твердотельных лазеров в отличие от СО2-лазера (10,6 мкм) дает возможность применять для фокусировки линзы из простого оптического стекла. Появляется возможность передачи энергии лазерного излучения по гибким оптоволоконным системам на значительные расстояния (до 100 м) с малыми потерями.
Следует также отметить, что эффективный КПД обработки материалов твердотельным лазером заметно превосходит значения КПД при сварке и в особенности при поверхностной обработке излучением СО2-лазера.
Для защиты металла шва при лазерной сварке от окисления используют газовую, флюсовую либо газофлюсовую защиту. Газовая защита осуществляется подачей защитного газа через сопло непосредственно в зону воздействия лазерного излучения на материал, подобно дуговой сварке. Специфика лазерной сварки обуславливает применение специальных сопел и составов защитных газов, обеспечивающих как надежную защиту, так и эффективное проплавление. На рисунке 3, а-г представлены некоторые варианты конструкций сопел, обеспечивающие наряду с защитой расплавленного металла шва также защиту ОШЗ. При сварке со сквозным проплавлением для ряда высокоактивных металлов требуется также защита корня шва.
При лазерной сварке в качестве защитных газов могут быть использованы те же газы, что и при дуговой. Однако следует учитывать их различное влияние на экранирующее действие факела, а значит, и на эффективность проплавления. Газы, имеющие более высокие потенциал ионизации и теплопроводность, обеспечивают максимальную эффективность проплавления.